A non-existence theorem for a semilinear Dirichlet problem involving critical exponent on halfspaces of the Heisenberg group

被引:27
作者
Uguzzoni, Francesco [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40127 Bologna, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 1999年 / 6卷 / 02期
关键词
D O I
10.1007/s000300050072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Delta(n)(II) be the Kohn Laplacian on the Heisenberg group H-n and let Q = 2n + 2 be the homogeneous dimension of H-n. In this note, completing a recent result obtained with E. Lanconelli [ 9], we prove that, if Pi is a halfspace of H-n, then the critical Dirichlet problem (*) - Delta H-n u = u Q+2/uQ-2 in Pi, u = 0 in partial derivative Pi has no nontrivial nonnegative weak solutions. This result enables to improve a representation theorem by Citti [ 2], for Palais-Smale sequences related to the equation in (*).
引用
收藏
页码:191 / 206
页数:16
相关论文
共 10 条