Dynamic coloring parameters for graphs with given genus

被引:16
作者
Loeb, Sarah [1 ,2 ]
Mahoney, Thomas [1 ,3 ]
Reiniger, Benjamin [1 ,4 ]
Wise, Jennifer [1 ]
机构
[1] Univ Illinois, Champaign, IL 61820 USA
[2] Coll William & Mary, Williamsburg, VA 23187 USA
[3] Emporia State Univ, Emporia, KS 66801 USA
[4] IIT, Chicago, IL 60616 USA
关键词
r-dynamic coloring; r-dynamic paintability; Graph genus;
D O I
10.1016/j.dam.2017.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proper vertex coloring of a graph G is r-dynamic if for each v is an element of V(G), at least min{r, d(v)} colors appear in N-G(v). In this paper we investigate r-dynamic versions of coloring, list coloring, and paintability. We prove that planar and toroidal graphs are 3-dynamically 10 colorable, and this bound is sharp for toroidal graphs. We also give bounds on the minimum number of colors needed for any r in terms of the genus of the graph: for sufficiently large r, every graph with genus g is r-dynamically ((r + 1)(g + 5) + 3)-colorable when g <= 2 and r-dynamically ((r + 1)(2g + 2) + 3)-colorable when g >= 3. Furthermore, each of these upper bounds for r-dynamic k-colorability also holds for r-dynamic k-choosability and for r-dynamic k-paintability. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 141
页数:13
相关论文
共 24 条
  • [1] On the list dynamic coloring of graphs
    Akbari, S.
    Ghanbari, M.
    Jahanbekam, S.
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (14) : 3005 - 3007
  • [2] [Anonymous], 1890, Quart. J. Math.
  • [3] BORODIN OV, 1989, J REINE ANGEW MATH, V394, P180
  • [4] On dynamic coloring for planar graphs and graphs of higher genus
    Chen, Ye
    Fan, Suohai
    Lai, Hong-Jian
    Song, Huimin
    Sun, Lei
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1064 - 1071
  • [5] List-coloring the square of a subcubic graph
    Cranston, Daniel W.
    Kim, Seog-Jin
    [J]. JOURNAL OF GRAPH THEORY, 2008, 57 (01) : 65 - 87
  • [6] Erdos P., 1979, C NUMERANTUM, V26, P125
  • [7] LARGEST PLANAR GRAPHS OF DIAMETER 2 AND FIXED MAXIMUM DEGREE
    HELL, P
    SEYFFARTH, K
    [J]. DISCRETE MATHEMATICS, 1993, 111 (1-3) : 313 - 322
  • [8] Brooks' Theorem via the Alon-Tarsi Theorem
    Hladky, Jan
    Kral', Daniel
    Schauz, Uwe
    [J]. DISCRETE MATHEMATICS, 2010, 310 (23) : 3426 - 3428
  • [9] Ivanco J., 1992, Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity (Prachatice, 1990), V51, P113
  • [10] On r-dynamic coloring of graphs
    Jahanbekam, Sogol
    Kim, Jaehoon
    Suil, O.
    West, Douglas B.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 206 : 65 - 72