The distribution of height and diameter in random non-plane binary trees

被引:10
|
作者
Broutin, Nicolas [1 ]
Flajolet, Philippe [1 ]
机构
[1] INRIA Rocquencourt, Algorithms Project, F-78153 Le Chesnay, France
关键词
random tree; height; generating function; singularity analysis; limiting distribution;
D O I
10.1002/rsa.20393
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This study is dedicated to precise distributional analyses of the height of non-plane unlabelled binary trees (Otter trees), when trees of a given size are taken with equal likelihood. The height of a rooted tree of size n is proved to admit a limiting theta distribution, both in a central and local sense, and obey moderate as well as large deviations estimates. The approximations obtained for height also yield the limiting distribution of the diameter of unrooted trees. The proofs rely on a precise analysis, in the complex plane and near singularities, of generating functions associated with trees of bounded height. (c) 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2012
引用
收藏
页码:215 / 252
页数:38
相关论文
共 50 条