Lack of Separation Principle for Quantized Linear Quadratic Gaussian Control

被引:27
|
作者
Fu, Minyue [1 ]
机构
[1] Zhejiang Univ, Sch Control Sci & Engn, Hangzhou, Zhejiang, Peoples R China
关键词
Certainty equivalence; linear quadratic Gaussian control; networked control; quantized estimation; quantized feedback control; separation principle; COMMUNICATION BANDWIDTH CONSTRAINTS; LQG OPTIMAL-CONTROL; FEEDBACK-CONTROL; OPTIMUM QUANTIZATION; LIMITED INFORMATION; DYNAMIC-SYSTEMS; STABILIZATION; CHANNELS;
D O I
10.1109/TAC.2012.2187010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This technical note studies the quantized linear quadratic Gaussian (LQG) control problem which is generalized from the classical LQG control but with the constraint that the feedback signal is quantized with a fixed bit rate. We show that state feedback control, state estimation and quantization can not be fully separated in general. Only a weak separation principle holds which converts the quantized LQG control problem into a quantized state estimation problem. Further separation of estimation and quantization is not possible in general. A concrete example is provided to demonstrate this fact. It is also shown that the so-called "whitening" approach to quantized state estimation is not optimal.
引用
收藏
页码:2385 / 2390
页数:6
相关论文
共 50 条
  • [1] Linear Quadratic Gaussian Control with Quantized Feedback
    Fu, Minyue
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 2172 - 2177
  • [2] Quantized feedback control for linear uncertain systems
    Fu, Minyue
    Xie, Lihua
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2010, 20 (08) : 843 - 857
  • [3] Separation principle in the fractional Gaussian linear-quadratic regulator problem with partial observation
    Kleptsyna, Marina
    Breton, Alain Le
    Michel, Viot
    ESAIM - Probability and Statistics, 2008, 12 : 94 - 126
  • [4] Linear quadratic Gaussian control with quantised innovations Kalman filter over a symmetric channel
    You, K.
    Xie, L.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (03) : 437 - 446
  • [5] SNR Analysis for Linear Quadratic Control Over Gaussian Channels with Feedback
    Shingin, Hidenori
    Ohta, Yoshito
    IFAC PAPERSONLINE, 2017, 50 (01): : 6403 - 6409
  • [6] Finite horizon quadratic optimal control and a separation principle for Markovian jump linear systems
    Costa, OLV
    Tuesta, EF
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (10) : 1836 - 1842
  • [7] LINEAR-QUADRATIC FRACTIONAL GAUSSIAN CONTROL
    Duncan, Tyrone E.
    Pasik-Duncan, Bozenna
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (06) : 4504 - 4519
  • [8] Adaptive Linear Quadratic Gaussian control of Markov Jump Linear Systems
    Feng, Liu
    He, Haili
    Peng, Li
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 1752 - 1757
  • [9] Adaptive linear quadratic gaussian control: The cost-biased approach revisited
    Campi, MC
    Kumar, PR
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (06) : 1890 - 1907
  • [10] Discounted cost linear quadratic Gaussian control for descriptor systems
    Mena, Hermann
    Pfurtscheller, Lena-Maria
    Voigt, Matthias
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (05) : 1349 - 1362