High-Performance Energy-Storage Architectures from Carbon Nanotubes and Nanocrystal Building Blocks

被引:107
作者
Chen, Zheng [2 ]
Zhang, Dieqing [1 ]
Wang, Xiaolei [2 ]
Jia, Xilai [2 ,3 ]
Wei, Fei [3 ]
Li, Hexing [1 ]
Lu, Yunfeng [2 ]
机构
[1] Shanghai Normal Univ, Dept Chem, Shanghai 200234, Peoples R China
[2] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[3] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
关键词
architectures; nanocrystals; carbon nanotubes; energy storage; high-performance; TIO2; ANATASE; ELECTROCHEMICAL CHARACTERIZATION; LITHIUM STORAGE; PARTICLE-SIZE; ELECTRODE; NANOCOMPOSITE; CAPABILITY; NANOSHEETS; INSERTION; THIN;
D O I
10.1002/adma.201104238
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-performance energy-storage architectures are fabricated by forming conformal coatings of active nanocrystal building blocks on preformed carbon nanotube conductive scaffolds for lithium ion electrodes. This unique structure offers effective pathways for charge transport, high active-material loading, structure robustness, and flexibility. This general approach enables the fabrication of a new family of high-performance architectures for energy storage and many other applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:2030 / 2036
页数:7
相关论文
共 50 条
[31]   Carbon-based asymmetric capacitor for high-performance energy storage devices [J].
Kim, Doyoung ;
Lee, Keunsik ;
Kim, Meeree ;
Kim, Yongshin ;
Lee, Hyoyoung .
ELECTROCHIMICA ACTA, 2019, 300 :461-469
[32]   All-carbon hybrids for high-performance electronics, optoelectronics and energy storage [J].
Qin, Shuchao ;
Liu, Yuanda ;
Jiang, Hongzhu ;
Xu, Yongbing ;
Shi, Yi ;
Zhang, Rong ;
Wang, Fengqiu .
SCIENCE CHINA-INFORMATION SCIENCES, 2019, 62 (12)
[33]   All-carbon hybrids for high-performance electronics, optoelectronics and energy storage [J].
Shuchao Qin ;
Yuanda Liu ;
Hongzhu Jiang ;
Yongbing Xu ;
Yi Shi ;
Rong Zhang ;
Fengqiu Wang .
Science China Information Sciences, 2019, 62
[34]   Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications [J].
Siwal, Samarjeet Singh ;
Zhang, Qibo ;
Devi, Nishu ;
Thakur, Vijay Kumar .
POLYMERS, 2020, 12 (03)
[35]   On the low reinforcing efficiency of carbon nanotubes in high-performance polymer fibres [J].
Goutianos, Stergios ;
Peijs, Ton .
NANOCOMPOSITES, 2021, 7 (01) :53-69
[36]   Azo-Linkage Redox Metal-Organic Framework Incorporating Carbon Nanotubes for High-Performance Aqueous Energy Storage [J].
Zhang, Hualei ;
Wang, Xinlei ;
Zhou, Jie ;
Tang, Weihua .
MOLECULES, 2023, 28 (22)
[37]   Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material [J].
Guan, Zhaoruxin ;
Liu, Huan ;
Xu, Bin ;
Hao, Xin ;
Wang, Zhaoxiang ;
Chen, Liquan .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (15) :7849-7854
[38]   In-situ-assembled polyaniline frameworks on reduced graphene oxide toward high-performance energy-storage materials [J].
Salem, Aliaa M. ;
Attia, Sayed Y. ;
Gaber, Amira ;
Mohamed, Saad G. ;
El-Hout, Soliman I. .
SYNTHETIC METALS, 2024, 307
[39]   Nickel hydroxide nanoplatelets via dendrimer-assisted growth on graphene for high-performance energy-storage applications [J].
Naveen, Nirmalesh ;
Park, Chunguk ;
Sohn, Kee-Sun ;
Pyo, Myoungho .
ELECTROCHIMICA ACTA, 2017, 248 :313-321
[40]   Uniform growth of Zn-Mn-Co ternary oxide nanoneedles for high-performance energy-storage applications [J].
Hussain, Iftikhar ;
Mohamed, Saad G. ;
Ali, Awais ;
Abbas, Nadir ;
Ammar, Syed Muhammad ;
Al Zoubi, Wail .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 837 :39-47