Prediction of air pollution index (API) using support vector machine (SVM)

被引:130
|
作者
Leong, W. C. [1 ]
Kelani, R. O. [1 ]
Ahmad, Z. [1 ]
机构
[1] Univ Sains Malaysia USM, Sch Chem Engn, Engn Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2020年 / 8卷 / 03期
关键词
Air pollution index; Support vector machine; Model prediction; REGRESSION-MODEL; LOCAL SCALE; QUALITY;
D O I
10.1016/j.jece.2019.103208
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The existing methods of calculating air pollution index are complex and time consuming. Therefore new accurate and efficient modeling techniques need to be proposed. Thus, a support vector machine is proposed in this study to model the air pollution index. There are three main parameters affecting the performance of the support vector machine model: penalty factor (C), regularization parameter (epsilon) and the type of kernel function used. However, in this study, only kernel functions model parameters are investigated. The results of the model are analyzed by using sum of squares error (SSE), mean of sum of squares error (MSSE) and coefficient of determination (R-2). It is found that the proposed model using radial basis function (RBF) kernel function effectively and accurately able to solve the problem of complex air pollution index modeling with sum square error (SSE), mean sum square error (MSSE) and coefficient of determination (R-2) of 2008, 3.1.4440 and 0.9843 respectively.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Prediction of water quality index (WQI) using support vector machine (SVM) and least square-support vector machine (LS-SVM)
    Leong, Wei Cong
    Bahadori, Alireza
    Zhang, Jie
    Ahmad, Z.
    INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT, 2021, 19 (02) : 149 - 156
  • [2] Indonesian Stock Prediction using Support Vector Machine (SVM)
    Santoso, Murtiyanto
    Sutjiadi, Raymond
    Lim, Resmana
    3RD INTERNATIONAL CONFERENCE ON ELECTRICAL SYSTEMS, TECHNOLOGY AND INFORMATION (ICESTI 2017), 2018, 164
  • [3] Gaussian Support Vector Machine Algorithm Based Air Pollution Prediction
    Bhuvaneshwari, K. S.
    Lima, J.
    Venkatachalam, K.
    Masud, Mehedi
    Abouhawwash, Mohamed
    Logeswaran, T.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 683 - 695
  • [4] Gaussian support vector machine algorithm based air pollution prediction
    Bhuvaneshwari, K.S.
    Uma, J.
    Venkatachalam, K.
    Masud, Mehedi
    Abouhawwash, Mohamed
    Logeswaran, T.
    Computers, Materials and Continua, 2022, 71 (01): : 683 - 695
  • [5] Spatial Choice Modeling Using the Support Vector Machine (SVM): Characterization and Prediction
    Yoon, Yong
    PREDICTIVE ECONOMETRICS AND BIG DATA, 2018, 753 : 767 - 778
  • [6] An enhanced approach for predicting air pollution using quantum support vector machine
    Farooq, Omer
    Shahid, Maida
    Arshad, Shazia
    Altaf, Ayesha
    Iqbal, Faiza
    Vera, Yini Airet Miro
    Flores, Miguel Angel Lopez
    Ashraf, Imran
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Diseases classification using Support Vector Machine(SVM)
    Liu, S
    Song, Q
    Hu, WJ
    Cao, AZ
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 760 - 763
  • [8] Prediction of water quality index in constructed wetlands using support vector machine
    Reza Mohammadpour
    Syafiq Shaharuddin
    Chun Kiat Chang
    Nor Azazi Zakaria
    Aminuddin Ab Ghani
    Ngai Weng Chan
    Environmental Science and Pollution Research, 2015, 22 : 6208 - 6219
  • [9] Prediction of water quality index in constructed wetlands using support vector machine
    Mohammadpour, Reza
    Shaharuddin, Syafiq
    Chang, Chun Kiat
    Zakaria, Nor Azazi
    Ab Ghani, Aminuddin
    Chan, Ngai Weng
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (08) : 6208 - 6219
  • [10] Prediction of blast-induced air overpressure using support vector machine
    Khandelwal, Manoj
    Kankar, P. K.
    ARABIAN JOURNAL OF GEOSCIENCES, 2011, 4 (3-4) : 427 - 433