Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting

被引:12
|
作者
Barpanda, Prabeer [1 ,2 ]
Dedryvere, Remi [3 ]
Deschamps, Michael [4 ]
Delacourt, Charles [2 ]
Reynaud, Marine [2 ]
Yamada, Atsuo [1 ]
Tarascon, Jean-Marie [2 ,5 ]
机构
[1] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Picardie Jules Verne, Lab Reactivite & Chim Solides, CNRS, UMR 6007, F-80039 Amiens, France
[3] Univ Pau & Pays Adour, IPREM ECP, F-64000 Pau, France
[4] CNRS, Cenre Rech Mat Hautes Temp, UPR 3079, F-45071 Orleans, France
[5] Coll France, F-745005 Paris, France
基金
日本学术振兴会;
关键词
Conductivity; Fluorosulphates; Ionic liquid grafting; Solid electrolyte; CATHODE MATERIAL; LITHIUM; BATTERIES;
D O I
10.1007/s10008-011-1598-y
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Recently unveiled 'alkali metal fluorosulphate (AMSO(4)F)' class of compounds offers promising electrochemical and transport properties. Registering conductivity value as high as 10(-7) S cm(-1) in NaMSO4F phases, we explored the fluorosulphate group to design novel compounds with high Li-ion conductivity suitable for solid electrolyte applications. In the process, we produced sillimanite-structured LiZnSO4F by low temperature synthesis (T a parts per thousand currency sign 300 A degrees C). Examining this phase, we accidentally discovered the possibility of improving the ionic conductivity of poor conductors by forming a monolayer of ionic liquid at their particle surface. This phenomenon was studied by solid-state NMR, XPS and AC impedance spectroscopy techniques. Further, similar trends were noticed in other fluorosulphate materials like tavorite LiCoSO4F and triplite LiMnSO4F. With this study, we propose 'ionic liquid grafting' as an interfacial route to enable good Li-ion conductivity in otherwise poor conducting ceramics.
引用
收藏
页码:1743 / 1751
页数:9
相关论文
共 50 条
  • [1] Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting
    Prabeer Barpanda
    Rémi Dedryvère
    Michael Deschamps
    Charles Delacourt
    Marine Reynaud
    Atsuo Yamada
    Jean-Marie Tarascon
    Journal of Solid State Electrochemistry, 2012, 16 : 1743 - 1751
  • [2] Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries
    Navarra, Maria Assunta
    MRS BULLETIN, 2013, 38 (07) : 548 - 553
  • [3] Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries
    Maria Assunta Navarra
    MRS Bulletin, 2013, 38 : 548 - 553
  • [4] Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI- and FSI- Anions
    Kirchhoefer, Marija
    von Zamory, Jan
    Paillard, Elie
    Passerini, Stefano
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (08): : 14868 - 14890
  • [5] Optimizing Li-ion Solvation in Gel Polymer Electrolytes to Stabilize Li-Metal Anode
    Huang, Kangsheng
    Bi, Sheng
    Xu, Hai
    Wu, Langyuan
    Fang, Chang
    Zhang, Xiaogang
    CHEMSUSCHEM, 2023, 16 (19)
  • [6] Feasible Energy Density Pushes of Li-Metal vs. Li-Ion Cells
    Karabelli, Duygu
    Birke, Kai Peter
    APPLIED SCIENCES-BASEL, 2021, 11 (16):
  • [7] Advances on liquid electrolytes for Li-ion and Li metal batteries
    Martins, Vitor L.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 38
  • [8] Rationally coordinating polymer enabling effective Li-ion percolation network in composite electrolyte for solid-state Li-metal batteries
    Zhao, Long
    Du, Yunfei
    Wang, Chenming
    Li, Dong
    Li, Hao
    Zhao, Yong
    ENERGY STORAGE MATERIALS, 2024, 68
  • [9] Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery
    Mao, Xufeng
    Shi, Liyi
    Zhang, Haijiao
    Wang, Zhuyi
    Zhu, Jiefang
    Qiu, Zhengfu
    Zhao, Yin
    Zhang, Meihong
    Yuan, Shuai
    JOURNAL OF POWER SOURCES, 2017, 342 : 816 - 824
  • [10] A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Li-Ion and Li-Metal Batteries
    Paul, Partha P.
    McShane, Eric J.
    Colclasure, Andrew M.
    Balsara, Nitash
    Brown, David E.
    Cao, Chuntian
    Chen, Bor-Rong
    Chinnam, Parameswara R.
    Cui, Yi
    Dufek, Eric J.
    Finegan, Donal P.
    Gillard, Samuel
    Huang, Wenxiao
    Konz, Zachary M.
    Kostecki, Robert
    Liu, Fang
    Lubner, Sean
    Prasher, Ravi
    Preefer, Molleigh B.
    Qian, Ji
    Rodrigues, Marco-Tulio Fonseca
    Schnabel, Manuel
    Son, Seoung-Bum
    Srinivasan, Venkat
    Steinruck, Hans-Georg
    Tanim, Tanvir R.
    Toney, Michael F.
    Tong, Wei
    Usseglio-Viretta, Francois
    Wan, Jiayu
    Yusuf, Maha
    McCloskey, Bryan D.
    Nelson Weker, Johanna
    ADVANCED ENERGY MATERIALS, 2021, 11 (17)