Numerical simulation of fatigue crack propagation under biaxial tensile loadings with phase differences

被引:15
作者
Gotoh, Koji [1 ]
Niwa, Toshio [2 ]
Anai, Yosuke [3 ]
机构
[1] Kyushu Univ, Dept Marine Syst Engn, Nishi Ku, Fukuoka 8190395, Japan
[2] Natl Maritime Res Inst, Maintenance Res Technol Grp, Mitaka, Tokyo 1810004, Japan
[3] Natl Maritime Res Inst, Struct Anal & Proc Res Grp, Mitaka, Tokyo 1810004, Japan
基金
日本学术振兴会;
关键词
Fatigue; Fatigue crack growth; Biaxial fatigue; Phase difference; Strip yield mode; RPG stress criterion;
D O I
10.1016/j.marstruc.2015.03.003
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Fatigue crack propagation under the biaxial tensile loading, which loading directions are normal and parallel to the initial crack position, is highlighted in this study. Most of in-service structures and vessels are subjected to many types of loading. Generally, these loadings have different axial components with different phases. However, the structural integrities of structures and vessels are evaluated according to design codes based on theoretical and experimental investigations under a uniaxial loading condition. Most of these codes are based on the S-N curves approach. An approach that does not use S-N curves has been favored by researchers, with the fracture mechanics approach preferred for evaluating the fatigue life of structures. An advanced fracture mechanics approach was developed based on the Re-tensile Plastic zone Generating (RPG) stress criterion for fatigue crack propagation. In this study, fatigue crack propagation tests under biaxial loading with six different phase and loading conditions are performed and the effect of the phase difference under biaxial loading is evaluated. A numerical simulation method of fatigue crack propagation based on the RPG stress criterion under different biaxial loading phase conditions is presented and compared to measured data. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:53 / 70
页数:18
相关论文
共 12 条
[11]  
Yuuki R, 1984, ZAIRYOU, V33, P1271
[12]  
Yuuki R, 1988, ZAIR MAT SCI RES, V37, P1084