Rank 2 symmetric hyperbolic Kac-Moody algebras and Hilbert modular forms

被引:6
作者
Kim, Henry H. [1 ,2 ]
Lee, Kyu-Hwan [2 ,3 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Korea Inst Adv Study, Seoul, South Korea
[3] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Hyperbolic Kac-Moody algebras; Generalized Kac-Moody algebras; Hilbert modular forms; Borcherds products; Automorphic correction; LIE-ALGEBRAS;
D O I
10.1016/j.jalgebra.2014.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study rank 2 symmetric hyperbolic Kac Moody algebras H/(a) with the Cartan matrices ((2)(-2) (-a)(2)), a >= 3, and their automorphic correction in terms of Hilbert modular forms. We associate a family of H(a)'s to the quadratic field Q(root p) for each odd prime p and show that there exists a chain of embeddings in each family. When p = 5, 13, 17, we show that the first 71(a) in each family, i.e. H(3), H(11), H(66), is contained in a generalized Kac Moody superalgebra whose denominator function is a Hilbert modular form given by a Borcherds product. Hence, our results provide automorphic correction for those H(a)'s. We also compute asymptotic formulas for the root multiplicities of the generalized Kac-Moody superalgebras using the fact that the exponents in the Borcherds products are Fourier coefficients of weakly holomorphic modular forms of weight 0. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 104
页数:24
相关论文
共 21 条
[1]  
[Anonymous], THESIS
[2]  
[Anonymous], 2004, KACMOODY LIE ALGEBRA, DOI DOI 10.1090/CONM/343/06185
[3]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[4]   MONSTROUS MOONSHINE AND MONSTROUS LIE-SUPERALGEBRAS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :405-444
[5]   On Borcherds products associated with lattices of prime discriminant [J].
Bruinier, JH ;
Bundschuh, M .
RAMANUJAN JOURNAL, 2003, 7 (1-3) :49-61
[6]  
Bruinier JH, 2008, 1 2 3 MODULAR FORMS
[7]   A HYPERBOLIC KAC-MOODY ALGEBRA AND THE THEORY OF SIEGEL MODULAR-FORMS OF GENUS-2 [J].
FEINGOLD, AJ ;
FRENKEL, IB .
MATHEMATISCHE ANNALEN, 1983, 263 (01) :87-144
[8]   A HYPERBOLIC GCM LIE-ALGEBRA AND THE FIBONACCI NUMBERS [J].
FEINGOLD, AJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 80 (03) :379-385
[9]  
Gritsenko VA, 1997, AM J MATH, V119, P181
[10]   On classification of Lorentzian Kac-Moody algebras [J].
Gritsenko, VA ;
Nikulin, VV .
RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (05) :921-979