V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery

被引:317
|
作者
Li, Yankai [1 ]
Huang, Zhimei [1 ]
Kalambate, Pramod K. [1 ]
Zhong, Yun [1 ]
Huang, Zhaoming [1 ]
Xie, Meilan [1 ]
Shen, Yue [1 ]
Huang, Yunhui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
Zinc-ion battery; V2O5; nanopaper; Cathode material; Solution-based exfoliation; ENERGY-STORAGE; CHALLENGES; STATES;
D O I
10.1016/j.nanoen.2019.04.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous batteries are suitable for large scale energy storage due to cost and safety concerns. Among all aqueous batteries, rechargeable aqueous zinc-ion battery is a promising choice because zinc electrode has low equilibrium potential, high exchange current density, and high hydrogen evolution overpotential. However, since zinc ion is a divalent cation, it is difficult to find a cathode material in which zinc ion can reversibly insert and extract. In this work, we introduce a novel V2O5 nanopaper consisting of V2O5 nanofibers and carbon nanotubes as reversible Zn-ion cathode. V2O5 has a layered crystalline structure. The spaces between the oxide layers may serve as 2-dimensional diffusion pathways for Zn ions. Meanwhile, the nanofiber morphology endows the material with short ionic diffusion distance and may tolerate high volume change. As a result, the V2O5 nanopaper cathode delivers a high capacity of 375 mAh g(-1) and long cycle life up to 500 cycles.
引用
收藏
页码:752 / 759
页数:8
相关论文
共 50 条
  • [1] V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery (vol 60, pg 752, 2019)
    Li, Yankai
    Huang, Zhimei
    Kalambate, Pramod K.
    Zhong, Yun
    Huang, Zhaoming
    Xie, Meilan
    Shen, Yue
    Huang, Yunhui
    NANO ENERGY, 2019, 63
  • [2] Porous V2O5 microspheres: a high-capacity cathode material for aqueous zinc-ion batteries
    Hu, Ping
    Zhu, Ting
    Ma, Jingxuan
    Cai, Congcong
    Hu, Guangwu
    Wang, Xuanpeng
    Liu, Ziang
    Zhou, Liang
    Mai, Liqiang
    CHEMICAL COMMUNICATIONS, 2019, 55 (58) : 8486 - 8489
  • [3] Mechanism of Storage and Capacity Attenuation of V2O5 as Cathode of Zinc-ion Battery
    Huang, Yongfeng
    Huang, Wenting
    Liu, Wenbao
    Liu, Yuefeng
    Liu, Wei
    Xu, Chengjun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (08): : 1859 - 1865
  • [4] The Current Developments and Perspectives of V2O5 as Cathode for Rechargeable Aqueous Zinc-Ion Batteries
    Zhang, Wenwei
    Zuo, Chunli
    Tang, Chen
    Tang, Wen
    Lan, Binxu
    Fu, Xudong
    Dong, Shijie
    Luo, Ping
    ENERGY TECHNOLOGY, 2021, 9 (02)
  • [5] Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries
    Chen, Xuyong
    Wang, Liubin
    Li, Hang
    Cheng, Fangyi
    Chen, Jun
    JOURNAL OF ENERGY CHEMISTRY, 2019, 38 : 20 - 25
  • [6] Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries
    Xuyong Chen
    Liubin Wang
    Hang Li
    Fangyi Cheng
    Jun Chen
    Journal of Energy Chemistry , 2019, (11) : 20 - 25
  • [7] Harnessing oxygen vacancy in V2O5 as high performing aqueous zinc-ion battery cathode
    Qi, Zichen
    Xiong, Ting
    Chen, Tao
    Shi, Wen
    Zhang, Mingchang
    Ang, Zhi Wei Javier
    Fan, Huiqing
    Xiao, Hong
    Lee, Wee Siang Vincent
    Xue, Junmin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 870
  • [8] Structural Modification of V2O5 as High-Performance Aqueous Zinc-Ion Battery Cathode
    Tang, Boya
    Zhou, Jiang
    Fang, Guozhao
    Guo, Shan
    Guo, Xun
    Shan, Lutong
    Tang, Yan
    Liang, Shuquan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) : A480 - A486
  • [9] Micro Fe-doped V2O5 as cathode material for aqueous zinc-ion battery application
    Wang, Haiyang
    Liang, Miaomiao
    Ma, Hao
    Ma, Cheng
    Duan, Wenyuan
    Yang, Haiyan
    He, Zemin
    Zhao, Yuzhen
    Miao, Zongcheng
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [10] V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries
    Qin, Haigang
    Chen, Linlin
    Wang, Limin
    Chen, Xi
    Yang, Zhanhong
    ELECTROCHIMICA ACTA, 2019, 306 : 307 - 316