Curves with many points and multiplication complexity in any extension of Fq

被引:29
作者
Ballet, S [1 ]
机构
[1] CNRS, Inst Math Luminy, F-13288 Marseille 9, France
关键词
bilinear complexity; finite fields; algebraic function fields; algebraic curves;
D O I
10.1006/ffta.1999.0255
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
From the existence of algebraic function fields having some good properties, we obtain some new upper bounds on the bilinear complexity of multiplication in all extensions of the finite held F-q, where q is an arbitrary prime power. So we prove that the bilinear complexity of multiplication in the finite fields F-q(n) is linear uniformly in q with respect to the degree n. (C) 1999 Academic Press.
引用
收藏
页码:364 / 377
页数:14
相关论文
共 14 条
[1]  
[Anonymous], 1973, LECT NOTES MATH
[2]  
BALLET S, 1997, 9717 I MATH LUM
[3]  
Burgisser Peter, 1997, GRUNDLEHREN MATH WIS, V315
[4]  
Chudnovsky D. V., 1988, Journal of Complexity, V4, P285, DOI 10.1016/0885-064X(88)90012-X
[5]  
Elkies NoamD., 1997, P 35 ANN ALL C COMM, P23
[6]   The genus of curves over finite fields with many rational points [J].
Fuhrmann, R ;
Torres, F .
MANUSCRIPTA MATHEMATICA, 1996, 89 (01) :103-106
[7]   A TOWER OF ARTIN-SCHREIER EXTENSIONS OF FUNCTION-FIELDS ATTAINING THE DRINFELD-VLADUT BOUND [J].
GARCIA, A ;
STICHTENOTH, H .
INVENTIONES MATHEMATICAE, 1995, 121 (01) :211-222
[8]  
GROOTE HF, 1985, LECT NOTES COMPUTER, V245
[9]   ON THE COMPLEXITY OF MULTIPLICATION IN FINITE-FIELDS [J].
LEMPEL, A ;
SEROUSSI, G ;
WINOGRAD, S .
THEORETICAL COMPUTER SCIENCE, 1983, 22 (03) :285-296
[10]   OPTIMAL-ALGORITHMS FOR MULTIPLICATION IN CERTAIN FINITE-FIELDS USING ELLIPTIC-CURVES [J].
SHOKROLLAHI, MA .
SIAM JOURNAL ON COMPUTING, 1992, 21 (06) :1193-1198