Review of recent advances in carbon dioxide separation and capture

被引:643
作者
Kenarsari, Saeed Danaei [1 ]
Yang, Dali [2 ]
Jiang, Guodong [1 ,5 ]
Zhang, Suojiang [3 ]
Wang, Jianji [4 ]
Russell, Armistead G. [5 ]
Wei, Qiang [6 ]
Fan, Maohong [1 ,5 ]
机构
[1] Univ Wyoming, Dept Chem & Petr Engn, Laramie, WY 82071 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Chinese Acad Sci, Inst Proc Engn, Beijing 100190, Peoples R China
[4] Henan Normal Univ, Henan Key Lab Environm Pollut Control, Sch Chem & Environm Sci, Xinxiang 453007, Henan, Peoples R China
[5] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[6] Santa Fe Sci & Technol Inc, Santa Fe, NM 87507 USA
关键词
METAL-ORGANIC FRAMEWORKS; CHEMICAL-LOOPING COMBUSTION; HOLLOW-FIBER MEMBRANES; TEMPERATURE IONIC LIQUIDS; FLUIDIZED-BED COMBUSTION; SELECTIVE CO2 SEPARATION; MIXED-MATRIX MEMBRANES; FLUE-GAS; POWER-PLANTS; MESOPOROUS SILICA;
D O I
10.1039/c3ra43965h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This review provides a comprehensive assessment of recently improved carbon dioxide (CO2) separation and capture systems, used in power plants and other industrial processes. Different approaches for CO2 capture are pre-combustion, post-combustion capture, and oxy-combustion systems, which are reviewed, along with their advantages and disadvantages. New technologies and prospective "breakthrough technologies", for instance: novel solvents, sorbents, and membranes for gas separation are examined. Other technologies including chemical looping technology (reaction between metal oxides and fuels, creating metal particles, carbon dioxide, and water vapor) and cryogenic separation processes (based on different phase change temperatures for various gases to separate them) are reviewed as well. Furthermore, the major CO2 separation technologies, such as absorption (using a liquid solvent to absorb the CO2), adsorption (using solid materials with surface affinity to CO2 molecules), and membranes (using a thin film to selectively permeate gases) are extensively discussed, though issues and technologies related to CO2 transport and storage are not considered in this paper.
引用
收藏
页码:22739 / 22773
页数:35
相关论文
共 249 条
[1]   Gas permeation in amine functionalized silicon rubber membranes [J].
Achalpurkar, Manoj P. ;
Kharul, Ulhas K. ;
Lohokare, Harshada R. ;
Karadkar, Prasad B. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2007, 57 (02) :304-313
[2]   Metal organic framework mixed matrix membranes for gas separations [J].
Adams, Ryan ;
Carson, Cantwell ;
Ward, Jason ;
Tannenbaum, Rina ;
Koros, William .
MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 131 (1-3) :13-20
[3]   Selection of oxygen carriers for chemical-looping combustion [J].
Adánez, J ;
de Diego, LF ;
García-Labiano, F ;
Gayán, P ;
Abad, A ;
Palacios, JM .
ENERGY & FUELS, 2004, 18 (02) :371-377
[4]   Progress in Chemical-Looping Combustion and Reforming technologies [J].
Adanez, Juan ;
Abad, Alberto ;
Garcia-Labiano, Francisco ;
Gayan, Pilar ;
de Diego, Luis F. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2012, 38 (02) :215-282
[5]   Development of a CaO-Based CO2 Sorbent with Improved Cyclic Stability [J].
Albrecht, Karl O. ;
Wagenbach, Kyle S. ;
Satrio, Justinus A. ;
Shanks, Brent H. ;
Wheelock, Thomas D. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (20) :7841-7848
[6]  
Andrus HE, 2009, ALSTOMS CALCIUM OXID
[7]  
Appl M., 1999, AMMONIA PRINCIPLES I
[8]  
Armstrong PA, 2005, ITM OXYGEN GASIFICAT
[9]   Cryogenic method for H2 and CH4 recovery from a rich CO2 stream in pre-combustion carbon capture and storage schemes [J].
Atsonios, K. ;
Panopoulos, K. D. ;
Doukelis, A. ;
Koumanakos, A. ;
Kakaras, E. .
ENERGY, 2013, 53 :106-113
[10]   Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents [J].
Bara, Jason E. ;
Gabriel, Christopher J. ;
Hatakeyama, Evan S. ;
Carlisle, Trevor K. ;
Lessmann, Sonja ;
Noble, Richard D. ;
Gin, Douglas L. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 321 (01) :3-7