We prove an exponential concentration bound for cover times of general graphs in terms of the Gaussian free field, extending the work of Ding, Lee, and Peres [8] and Ding [7]. The estimate is asymptotically sharp as the ratio of hitting time to cover time goes to zero.& para;& para;The bounds are obtained by showing a stochastic domination in the generalized second Ray-Knight theorem, which was shown to imply exponential concentration of cover times by Ding in [7]. This stochastic domination result appeared earlier in a preprint of Lupu [22], but the connection to cover times was not mentioned.
机构:
Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, Acapulco 39650, Guerrero, MexicoUniv Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, Acapulco 39650, Guerrero, Mexico
Molina, Edil D.
Rodriguez, Jose M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Matemat, Ave Univ 30, Madrid 28911, SpainUniv Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, Acapulco 39650, Guerrero, Mexico
Rodriguez, Jose M.
Sanchez, Jose L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, Acapulco 39650, Guerrero, MexicoUniv Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, Acapulco 39650, Guerrero, Mexico
Sanchez, Jose L.
Sigarreta, Jose M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, Acapulco 39650, Guerrero, MexicoUniv Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, Acapulco 39650, Guerrero, Mexico