Parameter and State Estimation of Nonlinear Systems Using a Multi-Observer Under the Supervisory Framework
被引:43
作者:
Chong, Michelle S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Ctr Control Dynam Syst & Computat CCDC, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Ctr Control Dynam Syst & Computat CCDC, Santa Barbara, CA 93106 USA
Chong, Michelle S.
[1
]
Nesic, Dragan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, AustraliaUniv Calif Santa Barbara, Ctr Control Dynam Syst & Computat CCDC, Santa Barbara, CA 93106 USA
Nesic, Dragan
[2
]
Postoyan, Romain
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lorraine, CRAN, UMR 7039, F-54000 Nancy, France
CNRS, CRAN, UMR 7039, F-54506 Vandoeuvre Les Nancy, FranceUniv Calif Santa Barbara, Ctr Control Dynam Syst & Computat CCDC, Santa Barbara, CA 93106 USA
Postoyan, Romain
[3
,4
]
Kuhlmann, Levin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, AustraliaUniv Calif Santa Barbara, Ctr Control Dynam Syst & Computat CCDC, Santa Barbara, CA 93106 USA
Kuhlmann, Levin
[2
]
机构:
[1] Univ Calif Santa Barbara, Ctr Control Dynam Syst & Computat CCDC, Santa Barbara, CA 93106 USA
We present a hybrid scheme for the parameter and state estimation of nonlinear continuous-time systems, which is inspired by the supervisory setup used for control. State observers are synthesized for some nominal parameter values and a criterion is designed to select one of these observers at any given time instant, which provides state and parameter estimates. Assuming that a persistency of excitation condition holds, the convergence of the parameter and state estimation errors to zero is ensured up to a margin, which can be made as small as desired by increasing the number of observers. To reduce the potential computational complexity of the scheme, we explain how the sampling of the parameter set can be dynamically updated using a zoom-in procedure. This strategy typically requires a fewer number of observers for a given estimation error margin compared to the static sampling policy. The results are shown to be applicable to linear systems and to a class of nonlinear systems. We illustrate the applicability of the approach by estimating the synaptic gains and the mean membrane potentials of a neural mass model.
机构:
Jiangnan Univ, Engn Res Ctr Internet Things Technol & Applicat, Minist Educ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R ChinaJiangnan Univ, Engn Res Ctr Internet Things Technol & Applicat, Minist Educ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
Zhang, Shuai
Wang, Zi-Yun
论文数: 0引用数: 0
h-index: 0
机构:
Jiangnan Univ, Engn Res Ctr Internet Things Technol & Applicat, Minist Educ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R ChinaJiangnan Univ, Engn Res Ctr Internet Things Technol & Applicat, Minist Educ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
Wang, Zi-Yun
Wang, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Jiangnan Univ, Engn Res Ctr Internet Things Technol & Applicat, Minist Educ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R ChinaJiangnan Univ, Engn Res Ctr Internet Things Technol & Applicat, Minist Educ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
Wang, Yan
Ji, Zhi-Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Jiangnan Univ, Engn Res Ctr Internet Things Technol & Applicat, Minist Educ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R ChinaJiangnan Univ, Engn Res Ctr Internet Things Technol & Applicat, Minist Educ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
机构:
Jiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R ChinaJiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
Cui, Ting
Ding, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Jiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R ChinaJiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
机构:
Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen 510275, Peoples R China
Guangdong Prov Key Lab Fire Sci & Intelligent Emer, Guangzhou 510006, Peoples R ChinaSun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen 510275, Peoples R China
Liu, Ziyang
Han, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen 510275, Peoples R China
Guangdong Prov Key Lab Fire Sci & Intelligent Emer, Guangzhou 510006, Peoples R ChinaSun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen 510275, Peoples R China
Han, Yu
Feng, Guodong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen 510275, Peoples R China
Guangdong Prov Key Lab Fire Sci & Intelligent Emer, Guangzhou 510006, Peoples R ChinaSun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen 510275, Peoples R China
Feng, Guodong
Kar, Narayan C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, CanadaSun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen 510275, Peoples R China