Parameter and State Estimation of Nonlinear Systems Using a Multi-Observer Under the Supervisory Framework

被引:43
|
作者
Chong, Michelle S. [1 ]
Nesic, Dragan [2 ]
Postoyan, Romain [3 ,4 ]
Kuhlmann, Levin [2 ]
机构
[1] Univ Calif Santa Barbara, Ctr Control Dynam Syst & Computat CCDC, Santa Barbara, CA 93106 USA
[2] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
[3] Univ Lorraine, CRAN, UMR 7039, F-54000 Nancy, France
[4] CNRS, CRAN, UMR 7039, F-54506 Vandoeuvre Les Nancy, France
关键词
Hybrid scheme; multi-observer; nonlinear; ADAPTIVE-CONTROL; OBSERVER; MODEL; CONTROLLERS; ROBUSTNESS; STABILITY; DESIGN; GAIN;
D O I
10.1109/TAC.2015.2406978
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a hybrid scheme for the parameter and state estimation of nonlinear continuous-time systems, which is inspired by the supervisory setup used for control. State observers are synthesized for some nominal parameter values and a criterion is designed to select one of these observers at any given time instant, which provides state and parameter estimates. Assuming that a persistency of excitation condition holds, the convergence of the parameter and state estimation errors to zero is ensured up to a margin, which can be made as small as desired by increasing the number of observers. To reduce the potential computational complexity of the scheme, we explain how the sampling of the parameter set can be dynamically updated using a zoom-in procedure. This strategy typically requires a fewer number of observers for a given estimation error margin compared to the static sampling policy. The results are shown to be applicable to linear systems and to a class of nonlinear systems. We illustrate the applicability of the approach by estimating the synaptic gains and the mean membrane potentials of a neural mass model.
引用
收藏
页码:2336 / 2349
页数:14
相关论文
共 50 条
  • [41] A parameter estimation approach to state observation of nonlinear systems
    Ortega, Romeo
    Bobtsov, Alexey
    Pyrkin, Anton
    Aranovskiy, Stanislav
    SYSTEMS & CONTROL LETTERS, 2015, 85 : 84 - 94
  • [42] Nonlinear Joint State-Parameter Observer for VAV Damper position Estimation
    Srinivasarengan, Krishnan
    Ragot, Jose
    Maquin, Didier
    Aubrun, Christophe
    2016 3RD CONFERENCE ON CONTROL AND FAULT-TOLERANT SYSTEMS (SYSTOL), 2016, : 164 - 169
  • [44] Stabilizing a class of nonlinear parameter-varying systems using interval observer based on a piecewise framework
    Faramin, Mostafa
    Rezaie, Behrooz
    Rahmani, Zahra
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (02) : 1150 - 1168
  • [45] Adaptive Multi-Observer Design for Systems with Unknown Long Input Delay
    Novella-Rodriguez, David F.
    Witrant, Emmanuel
    del Muro-Cuellar, Basilio
    Marquez-Rubio, Juan F.
    IFAC PAPERSONLINE, 2019, 52 (18): : 37 - 42
  • [46] Passivity framework for nonlinear state observer
    Shim, H
    Seo, JH
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 699 - 705
  • [47] Adaptive Observer for a Large Class of Nonlinear Systems with Exponential Convergence of Parameter Estimation
    Khayati, Karim
    Zhu, Jiang
    2013 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2013, : 100 - 105
  • [48] Multi-rate nonlinear state and parameter estimation in a bioreactor
    Tatiraju, S
    Soroush, M
    Mutharasan, R
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 2324 - 2328
  • [49] Multi-rate nonlinear state and parameter estimation in a bioreactor
    Tatiraju, S
    Soroush, M
    Mutharasan, R
    BIOTECHNOLOGY AND BIOENGINEERING, 1999, 63 (01) : 22 - 32
  • [50] A Low-power Multi High-Gain Observer Design for State Estimation in Nonlinear Systems
    Mousavi, S.
    Guay, M.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5435 - 5440