Parameter and State Estimation of Nonlinear Systems Using a Multi-Observer Under the Supervisory Framework

被引:43
作者
Chong, Michelle S. [1 ]
Nesic, Dragan [2 ]
Postoyan, Romain [3 ,4 ]
Kuhlmann, Levin [2 ]
机构
[1] Univ Calif Santa Barbara, Ctr Control Dynam Syst & Computat CCDC, Santa Barbara, CA 93106 USA
[2] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
[3] Univ Lorraine, CRAN, UMR 7039, F-54000 Nancy, France
[4] CNRS, CRAN, UMR 7039, F-54506 Vandoeuvre Les Nancy, France
关键词
Hybrid scheme; multi-observer; nonlinear; ADAPTIVE-CONTROL; OBSERVER; MODEL; CONTROLLERS; ROBUSTNESS; STABILITY; DESIGN; GAIN;
D O I
10.1109/TAC.2015.2406978
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a hybrid scheme for the parameter and state estimation of nonlinear continuous-time systems, which is inspired by the supervisory setup used for control. State observers are synthesized for some nominal parameter values and a criterion is designed to select one of these observers at any given time instant, which provides state and parameter estimates. Assuming that a persistency of excitation condition holds, the convergence of the parameter and state estimation errors to zero is ensured up to a margin, which can be made as small as desired by increasing the number of observers. To reduce the potential computational complexity of the scheme, we explain how the sampling of the parameter set can be dynamically updated using a zoom-in procedure. This strategy typically requires a fewer number of observers for a given estimation error margin compared to the static sampling policy. The results are shown to be applicable to linear systems and to a class of nonlinear systems. We illustrate the applicability of the approach by estimating the synaptic gains and the mean membrane potentials of a neural mass model.
引用
收藏
页码:2336 / 2349
页数:14
相关论文
共 50 条
  • [31] Sensor Fault Detection Based on State Estimation Observer in Discrete Nonlinear Systems
    Jia, Xiangyi
    Cheng, Qianshuai
    Hou, Yandong
    2018 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2018, : 542 - 547
  • [32] A Tutorial on Numerical Methods for State and Parameter Estimation in Nonlinear Dynamic Systems
    Houska, Boris
    Logist, Filip
    Diehl, Moritz
    Van Impe, Jan
    IDENTIFICATION FOR AUTOMOTIVE SYSTEMS, 2012, 418 : 67 - +
  • [33] Observer design for state and parameter estimation in a landslide model
    Mishra, Mohit
    Besancon, Gildas
    Chambon, Guillaume
    Baillet, Laurent
    IFAC PAPERSONLINE, 2020, 53 (02): : 16709 - 16714
  • [34] Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems
    Wang, CH
    Liu, HL
    Lin, TC
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2002, 10 (01) : 39 - 49
  • [35] Weighted Parameter Estimation for Hammerstein Nonlinear ARX Systems
    Ding, Jie
    Cao, Zhengxin
    Chen, Jiazhong
    Jiang, Guoping
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (04) : 2178 - 2192
  • [36] Multi Observer Structure for Rapid State Estimation in Linear Time Varying Systems
    Bernat, Jakub
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2018, 16 (04) : 1746 - 1755
  • [37] Multi-layer observer as new structure for state estimation in linear systems
    Bernat J.
    Kolota J.
    Superczyńska P.
    Stȩpień S.
    1600, De Gruyter Open Ltd (66): : 507 - 521
  • [38] Parameter estimation for nonlinear Volterra systems by using the multi-innovation identification theory and tensor decomposition
    Wang, Yanjiao
    Tang, Shihua
    Gu, Xiaobo
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (02): : 1782 - 1802
  • [39] Distributed fault detection for nonlinear multi-agent systems under fixed-time observer
    Wu, Yanming
    Wang, Zhanshan
    Huang, Zhanjun
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (13): : 7515 - 7532
  • [40] State estimation for a class of uncertain nonlinear systems: a finite-time observer approach
    Rios, Hector
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (04) : 1051 - 1059