Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings

被引:156
|
作者
Zhang, Xiangbo [1 ]
Lei, Lei [1 ]
Lai, Jinsheng [1 ]
Zhao, Haiming [1 ]
Song, Weibin [1 ]
机构
[1] China Agr Univ, Beijing Key Lab Crop Genet Improvement, Key Lab Crop Heterosis & Utilizat,Ministry of Edu, State Key Lab Agrobiotechnol,Natl Maize Improveme, 2 Yuanmingyuan West Rd, Beijing 100193, Peoples R China
来源
BMC PLANT BIOLOGY | 2018年 / 18卷
基金
中国国家自然科学基金;
关键词
Zea mays; Seedling; Drought stress; Water recovery; Photosynthetic efficiency; Transcription factor; FUNCTIONAL-ANALYSIS; ABIOTIC STRESS; PLANT-GROWTH; TOLERANCE; MECHANISMS; OVEREXPRESSION; IDENTIFICATION; ACCUMULATION; IMPROVEMENT; TRANSCRIPT;
D O I
10.1186/s12870-018-1281-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Drought is one of the major factors limiting global maize production. Exposure to long-term drought conditions inhibits growth and leads to yield losses. Although several drought-responsive genes have been identified and functionally analyzed, the mechanisms underlying responses to drought and water recovery treatments have not been fully elucidated. To characterize how maize seedling respond to drought stress at the transcriptional level, we analyzed physiological responses and differentially expressed genes (DEGs) in the inbred line B73 under water deficit and recovery conditions. Results: The data for relative leaf water content, leaf size, and photosynthesis-related parameters indicated that drought stress significantly repressed maize seedling growth. Further RNA sequencing analysis revealed that 6107 DEGs were responsive to drought stress and water recovery, with more down-regulated than up-regulated genes. Among the DEGs, the photosynthesis-and hormone-related genes were enriched in responses to drought stress and re-watering. Additionally, transcription factor genes from 37 families were differentially expressed among the three analyzed time-points. Gene ontology enrichment analyses of the DEGs indicated that 50 GO terms, including those related to photosynthesis, carbohydrate metabolism, oxidoreductase activities, nutrient metabolism and other drought-responsive pathways, were over-represented in the drought-treated seedlings. The content of gibberellin in drought treatment seedlings was decreased compared to that of control seedlings, while abscisic acid showed accumulated in the drought treated plants. The deep analysis of DEGs related to cell wall development indicated that these genes were prone to be down-regulated at drought treatment stage. Conclusions: Many genes that are differentially expressed in responses to drought stress and water recovery conditions affect photosynthetic systems and hormone biosynthesis. The identified DEGs, especially those encoding transcription factors, represent potential targets for developing drought-tolerant maize lines.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Mitigation of drought stress in maize and sorghum by humic acid: differential growth and physiological responses
    Abu-Ria, Mohamed E.
    Elghareeb, Eman M.
    Shukry, Wafaa M.
    Abo-Hamed, Samy A.
    Ibraheem, Farag
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [32] Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings
    Chen, Daoqian
    Wang, Shiwen
    Cao, Beibei
    Cao, Dan
    Leng, Guohui
    Li, Hongbing
    Yin, Lina
    Shan, Lun
    Deng, Xiping
    FRONTIERS IN PLANT SCIENCE, 2016, 6
  • [33] Combined physiological responses and differential expression of drought-responsive genes preliminarily explain the drought resistance mechanism of Lotus corniculatus
    Wang, Leiting
    Jian, Zhongling
    Wang, Puchang
    Zhao, Lili
    Chen, Keke
    FUNCTIONAL PLANT BIOLOGY, 2023, 50 (01) : 46 - 57
  • [34] Effects of salicylic acid on growth, physiology, and gene expression in rice seedlings under salt and drought stress
    Shan, Liqing
    Xu, Yating
    Wu, Dan
    Hu, Jiayi
    Yu, Tongyuan
    Dang, Cong
    Fang, Yunxia
    Zhang, Xiaoqin
    Tian, Quanxiang
    Xue, Dawei
    PLANT STRESS, 2024, 11
  • [35] Drought stimulation by hypocotyl exposure altered physiological responses to subsequent drought stress in peanut seedlings
    Qin, Feifei
    Xu, Hui-lian
    Ci, Dunwei
    ACTA PHYSIOLOGIAE PLANTARUM, 2017, 39 (07)
  • [36] Effects of drought and rehydration on root gene expression in seedlings of Pinus massoniana Lamb.
    Chen, Xinhua
    Chen, Hu
    Xu, Huilan
    Li, Mei
    Luo, Qunfeng
    Wang, Ting
    Yang, Zhangqi
    Gan, Siming
    TREE PHYSIOLOGY, 2023, 43 (09) : 1619 - 1640
  • [37] Morphological and Physiological Responses of Melia azedarach Seedlings of Different Provenances to Drought Stress
    Han, Chao
    Chen, Junna
    Liu, Zemao
    Chen, Hong
    Yu, Fangyuan
    Yu, Wanwen
    AGRONOMY-BASEL, 2022, 12 (06):
  • [38] Responses of pomegranate cultivars to severe water stress and recovery: changes on antioxidant enzyme activities, gene expression patterns and water stress responsive metabolites
    Pourghayoumi, Mohammadreza
    Rahemi, Majid
    Bakhshi, Davood
    Aalami, Ali
    Kamgar-Haghighi, Ali Akbar
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2017, 23 (02) : 321 - 330
  • [39] Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree
    Cai, Fu
    Zhang, Yushu
    Mi, Na
    Ming, Huiqing
    Zhang, Shujie
    Zhang, Hui
    Zhao, Xianli
    AGRICULTURAL WATER MANAGEMENT, 2020, 241
  • [40] Physiological responses of mycorrhizal symbiosis to drought stress in white clover
    Liang, Sheng-Min
    Jiang, Dao-Ju
    Xie, Miao-Miao
    Zou, Ying-Ning
    Wu, Qiang-Sheng
    Kuca, Kamil
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2021, 49 (01) : 1 - 10