Experimental Measurement-Device-Independent Quantum Key Distribution

被引:373
作者
Liu, Yang [1 ,2 ]
Chen, Teng-Yun [1 ,2 ]
Wang, Liu-Jun [1 ,2 ]
Liang, Hao [1 ,2 ]
Shentu, Guo-Liang [1 ,2 ]
Wang, Jian [1 ,2 ]
Cui, Ke [1 ,2 ]
Yin, Hua-Lei [1 ,2 ]
Liu, Nai-Le [1 ,2 ]
Li, Li [1 ,2 ]
Ma, Xiongfeng [3 ]
Pelc, Jason S. [4 ]
Fejer, M. M. [4 ]
Peng, Cheng-Zhi [1 ,2 ]
Zhang, Qiang [1 ,2 ]
Pan, Jian-Wei [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Shanghai Branch, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China
[4] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
基金
中国国家自然科学基金;
关键词
UNCONDITIONAL SECURITY; CRYPTOGRAPHY;
D O I
10.1103/PhysRevLett.111.130502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.
引用
收藏
页数:5
相关论文
共 34 条
[1]   From Bell's theorem to secure quantum key distribution [J].
Acin, Antonio ;
Gisin, Nicolas ;
Masanes, Lluis .
PHYSICAL REVIEW LETTERS, 2006, 97 (12)
[2]   Squashing models for optical measurements in quantum communication [J].
Beaudry, Normand J. ;
Moroder, Tobias ;
Lutkenhaus, Norbert .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[3]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[4]   Quantum cryptographic network based on quantum memories [J].
Biham, E ;
Huttner, B ;
Mor, T .
PHYSICAL REVIEW A, 1996, 54 (04) :2651-2658
[5]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[6]  
da Silva T., ARXIV12076345
[7]   100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors [J].
Diamanti, Eleni ;
Takesue, Hiroki ;
Langrock, Carsten ;
Fejer, M. M. ;
Yamamoto, Yoshihisa .
OPTICS EXPRESS, 2006, 14 (26) :13073-13082
[8]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[9]   Phase-remapping attack in practical quantum-key-distribution systems [J].
Fung, Chi-Hang Fred ;
Qi, Bing ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
PHYSICAL REVIEW A, 2007, 75 (03)
[10]  
Gottesman D, 2004, QUANTUM INF COMPUT, V4, P325