Adaptive RBF Neural Network Control for Three-Phase Active Power Filter

被引:2
作者
Fei, Juntao [1 ]
Wang, Zhe [1 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Jiangsu Key Lab Power Transmiss & Distribut Equip, Changzhou, Peoples R China
基金
美国国家科学基金会;
关键词
Active Power Filter; Adaptive Control; RBF Neural Network; NONLINEAR CONTROL; COMPENSATION; STRATEGY; DESIGN;
D O I
10.5772/56535
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
An adaptive radial basis function (RBF) neural network control system for three-phase active power filter (APF) is proposed to eliminate harmonics. Compensation current is generated to track command current so as to eliminate the harmonic current of non-linear load and improve the quality of the power system. The asymptotical stability of the APF system can be guaranteed with the proposed adaptive neural network strategy. The parameters of the neural network can be adaptively updated to achieve the desired tracking task. The simulation results demonstrate good performance, for example showing small current tracking error, reduced total harmonic distortion (THD), improved accuracy and strong robustness in the presence of parameters variation and nonlinear load. It is shown that the adaptive RBF neural network control system for three-phase APF gives better control than hysteresis control.
引用
收藏
页数:6
相关论文
共 22 条
[1]   A unified artificial neural network architecture for active power filters [J].
Abdeslam, Djaffar Ould ;
Wira, Patrice ;
Merckle, Jean ;
Flieller, Damien ;
Chapuis, Yves-Andre .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2007, 54 (01) :61-76
[2]   A Shunt Active Power Filter With Enhanced Performance Using ANN-Based Predictive and Adaptive Controllers [J].
Bhattacharya, Avik ;
Chakraborty, Chandan .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (02) :421-428
[3]   A novel reference compensation current strategy for shunt active power filter control [J].
Chang, GW ;
Shee, TC .
IEEE TRANSACTIONS ON POWER DELIVERY, 2004, 19 (04) :1751-1758
[4]   Current Harmonic Compensation by a Single-Phase Shunt Active Power Filter Controlled by Adaptive Neural Filtering [J].
Cirrincione, Maurizio ;
Pucci, Marcello ;
Vitale, Gianpaolo ;
Miraoui, Abdellatif .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (08) :3128-3143
[5]  
Dai WJ, 2008, ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 7, PROCEEDINGS, P124, DOI 10.1109/ICNC.2008.924
[6]  
Fei J., 2012, 13 IEEE WORKSH CONTR, P1
[7]   Control analysis of an active power filter using Lyapunov candidate [J].
Hua, C. -C. ;
Li, C-H. ;
Lee, C. -S. .
IET POWER ELECTRONICS, 2009, 2 (04) :325-334
[8]   A new control strategy for single-phase shunt active power filters using a Lyapunov function [J].
Kömürcügil, H ;
Kükrer, Ö .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006, 53 (01) :305-312
[9]   An adaptive neurocontroller using RBFN for robot manipulators [J].
Lee, MJ ;
Choi, YK .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2004, 51 (03) :711-717
[10]   Robust Dynamic Sliding-Mode Control Using Adaptive RENN for Magnetic Levitation System [J].
Lin, Faa-Jeng ;
Chen, Syuan-Yi ;
Shyu, Kuo-Kai .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (06) :938-951