The Chebyshev's property of certain hyperelliptic integrals of the first kind

被引:4
作者
Asheghi, R. [1 ]
Bakhshalizadeh, A. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
关键词
Chebyshev's property; Hyperelliptic integrals; The first kind; The exact bounds; 2; ABELIAN-INTEGRALS; MONOTONICITY; CRITERION; RATIO;
D O I
10.1016/j.chaos.2015.07.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the Chebyshev's property of the 3-dimensional vector space E = < J(0), J(1), J(2) >, where J(i)(h) = integral(H=h) X-i dx/y and H(x, y) = 1/2 y(2) + V(x) is a hyperelliptic Hamiltonian of degree 7. Our main result asserts that in two specific cases, namely (a) V' (x) = x(3) (1 - x)(3) and (b) V"(x) = x(5) (x - 1), E is an extended complete Chebyshev space. To this end we use the criterion and the tools developed by Grau et al. in [6]. We pose also the conjecture that F, is also a Chebyshev space when V' (x) = x(x - 1)(5). In this regard we give a partial result, Theorem 1.4, concerning the Chebyshev property of two subspaces of F. To prove it we use another criterion by Manosas and Villadelprat [7] to study when a collection of Abelian integrals is Chebyshev with accuracy k. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:162 / 175
页数:14
相关论文
共 10 条
[1]  
Arnold V.I., 1990, Adv. Soviet Math, V1, P1
[2]   Complete hyperelliptic integrals of the first kind and their non-oscillation [J].
Gavrilov, L ;
Iliev, ID .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (03) :1185-1207
[3]   A CHEBYSHEV CRITERION FOR ABELIAN INTEGRALS [J].
Grau, M. ;
Manosas, F. ;
Villadelprat, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (01) :109-129
[4]   Limit Cycles Near Homoclinic and Heteroclinic Loops [J].
Han, Maoan ;
Yang, Junmin ;
Tarta, Alexandrina -Alina ;
Gao, Yang .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) :923-944
[5]  
Karlin S., 1966, TCHEBYCHEFF SYSTEMS
[6]   Criterion for determining the monotonicity of the ratio of two Abelian integrals [J].
Li, CZ ;
Zhang, ZF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 124 (02) :407-424
[7]   THE MONOTONICITY OF THE RATIO OF TWO ABELIAN INTEGRALS [J].
Liu, Changjian ;
Xiao, Dongmei .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (10) :5525-5544
[8]   Bounding the number of zeros of certain Abelian integrals [J].
Manosas, F. ;
Villadelprat, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (06) :1656-1669
[9]  
Mardesic P., 1998, Travaux en cours, V57
[10]  
Wang N, 2012, J DIFFER EQU