Total Coloring of Planar Graphs Without Chordal Short Cycles

被引:5
作者
Wang, Huijuan [1 ]
Liu, Bin [2 ]
Wu, Jianliang [3 ]
机构
[1] Qingdao Univ, Coll Math, Qingdao 266071, Peoples R China
[2] Ocean Univ China, Dept Math, Qingdao 266100, Peoples R China
[3] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Planar graph; Total coloring; Cycle; TOTAL CHROMATIC NUMBER; MAXIMUM DEGREE 8; TRIANGLES; SURFACES;
D O I
10.1007/s00373-014-1449-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a planar graph with and be a vertex of . It is proved that if is not incident with chordal - or -cycles by Shen et al. (Appl Math Lett 22:1369-1373, 2009), or is not incident with -chordal -cycle by Chang et al. (Theor Comput Sci 476:16-23, 2013). In this paper we generalize these results and prove that if is not incident with chordal -cycle, or chordal -cycle, or -chordal -cycle, then .
引用
收藏
页码:1755 / 1764
页数:10
相关论文
共 20 条
[1]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[2]  
BORODIN OV, 1989, J REINE ANGEW MATH, V394, P180
[3]   Local condition for planar graphs of maximum degree 7 to be 8-totally colorable [J].
Chang, Gerard Jennhwa ;
Hou, Jianfeng ;
Roussel, Nicolas .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (08) :760-768
[4]   Total colorings of planar graphs with maximum degree 8 and without 5-cycles with two chords [J].
Chang, Jian ;
Wang, Hui-Juan ;
Wu, Jian-Liang ;
A, Yong-Ga .
THEORETICAL COMPUTER SCIENCE, 2013, 476 :16-23
[5]   Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally-colorable [J].
Du, Dingzhu ;
Shen, Lan ;
Wang, Yingqian .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) :2778-2784
[6]   Total coloring of planar graphs without 6-cycles [J].
Hou, Jianfeng ;
Liu, Bin ;
Liu, Guizhen ;
Wu, Jianliang .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (2-3) :157-163
[7]   The total chromatic number of any multigraph with maximum degree five is at most seven [J].
Kostochka, AV .
DISCRETE MATHEMATICS, 1996, 162 (1-3) :199-214
[8]   TOTAL-COLORING OF PLANE GRAPHS WITH MAXIMUM DEGREE NINE [J].
Kowalik, Lukasz ;
Sereni, Jean-Sebastien ;
Skrekovski, Riste .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (04) :1462-1479
[9]   Total colorings and list total colorings of planar graphs without intersecting 4-cycles [J].
Liu, Bin ;
Hou, Jianfeng ;
Wu, Jianliang ;
Liu, Guizhen .
DISCRETE MATHEMATICS, 2009, 309 (20) :6035-6043
[10]   Total coloring of planar graphs of maximum degree eight [J].
Roussel, Nicolas ;
Zhu, Xuding .
INFORMATION PROCESSING LETTERS, 2010, 110 (8-9) :321-324