First-principles study of diffusion and interactions of hydrogen with silicon, phosphorus, and sulfur impurities in nickel

被引:5
|
作者
Paranjape, Priyanvada [1 ]
Gopa, Priya [2 ]
Srinivasan, S. G. [1 ]
机构
[1] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76207 USA
[2] Univ North Texas, Dept Phys, Denton, TX 76207 USA
关键词
INITIO MOLECULAR-DYNAMICS; GRAIN-BOUNDARY; EMBRITTLEMENT; SEGREGATION; NI; TRANSITION; ENERGETICS; SIMULATION; STRENGTH; ELEMENTS;
D O I
10.1063/1.5068777
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using density functional theory (DFT), we systematically study the effect of Si, P, and S impurities on the diffusion and binding of an H atom in a face-centered-cubic (FCC) Ni lattice. First, we quantify binding energies of an H atom to a vacancy, an impurity atom, and a vacancy-impurity atom defect pair. The energetics of H interactions show that a vacancy-impurity atom defect pair with larger binding energy traps the H atom more strongly and correlates with electronic bonding. Next, we study how the impurities influence diffusion of an H atom by using the Climbing Image Nudged Elastic band method to evaluate the Minimum Energy Path and the energy barrier for diffusion. The H atom preferentially diffuses between tetrahedral to octahedral (T-O) interstitial positions in pure Ni and when impurities are present. However, the activation energy significantly decreases from 0.95 eV in pure Ni to 0.47 eV, 0.52 eV, and 0.46 eV, respectively, in the presence of Si, P, and S impurities, which speeds up H diffusion. We rationalize this by comparing the bonding character of the saddle point configuration and changes in the electronic structure of Ni for each system. Notably, these analyses correlate the lower values of the activation energies to a local atomic strain in a Ni lattice. Our DFT study also validates the hypothesis of Berkowitz and Kane that P increases the H diffusion and, thereby, significantly increases H embrittlement susceptibility of Ni. We report a similar effect for Si and S impurities in Ni. Published under license by AIP Publishing.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Diffusion of Si impurities in Ni under stress: A first-principles study
    Garnier, Thomas
    Manga, Venkateswara R.
    Bellon, Pascal
    Trinkle, Dallas R.
    PHYSICAL REVIEW B, 2014, 90 (02)
  • [12] First-Principles Study of Sulfur Corrosion Mechanism at Carbon Steel Grain Boundaries
    Hou, Tao
    Zhang, Yidong
    Fan, Zhou
    Tian, Bo
    Liu, Zhijiang
    Zhang, Ziyang
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [13] Grain boundary decohesion by sulfur segregation in ferromagnetic iron and nickel - A first-principles study
    Yamaguchi, Masatake
    Shiga, Motoyuki
    Kaburaki, Hideo
    MATERIALS TRANSACTIONS, 2006, 47 (11) : 2682 - 2689
  • [14] First-principles investigation of quantum mechanical effects on the diffusion of hydrogen in iron and nickel
    Di Stefano, Davide
    Mrovec, Matous
    Elsaesser, Christian
    PHYSICAL REVIEW B, 2015, 92 (22)
  • [15] Hydrogen diffusion in δ- and ε-TiH2: First-principles study
    Xie, Xiaoqing
    Wen, Bin
    Fan, Changzeng
    VACUUM, 2025, 233
  • [16] Hydrogen adsorption and diffusion on doped Zr(0001) surfaces: A first-principles study
    Zhang, Ziyang
    Liu, Liming
    Xu, Canhui
    Hu, Shuanglin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (91) : 38644 - 38654
  • [17] First-principles calculations of iron-hydrogen reactions in silicon
    Santos, Paulo
    Coutinho, Jose
    Oberg, Sven
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (24)
  • [18] First-principles modeling of the interactions of iron impurities with graphene and graphite
    Boukhvalov, Danil W.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (06): : 1347 - 1351
  • [19] First-principles study on the dissolution and diffusion behavior of hydrogen in carbide precipitates
    Li, Yifan
    Zhang, Xingming
    Wu, Tiantian
    Tang, Jianfeng
    Deng, Lei
    Li, Wei
    Wang, Liang
    Deng, Huiqiu
    Hu, Wangyu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (42) : 22030 - 22039
  • [20] First-principles study of hydrogen diffusion at grain boundaries of titanium dihydride
    Yu, Feifei
    Jin, Guangxi
    Xiang, Xia
    Zu, Xiaotao
    Hu, Shuanglin
    SURFACES AND INTERFACES, 2025, 62