First-principles study of diffusion and interactions of hydrogen with silicon, phosphorus, and sulfur impurities in nickel

被引:5
|
作者
Paranjape, Priyanvada [1 ]
Gopa, Priya [2 ]
Srinivasan, S. G. [1 ]
机构
[1] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76207 USA
[2] Univ North Texas, Dept Phys, Denton, TX 76207 USA
关键词
INITIO MOLECULAR-DYNAMICS; GRAIN-BOUNDARY; EMBRITTLEMENT; SEGREGATION; NI; TRANSITION; ENERGETICS; SIMULATION; STRENGTH; ELEMENTS;
D O I
10.1063/1.5068777
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using density functional theory (DFT), we systematically study the effect of Si, P, and S impurities on the diffusion and binding of an H atom in a face-centered-cubic (FCC) Ni lattice. First, we quantify binding energies of an H atom to a vacancy, an impurity atom, and a vacancy-impurity atom defect pair. The energetics of H interactions show that a vacancy-impurity atom defect pair with larger binding energy traps the H atom more strongly and correlates with electronic bonding. Next, we study how the impurities influence diffusion of an H atom by using the Climbing Image Nudged Elastic band method to evaluate the Minimum Energy Path and the energy barrier for diffusion. The H atom preferentially diffuses between tetrahedral to octahedral (T-O) interstitial positions in pure Ni and when impurities are present. However, the activation energy significantly decreases from 0.95 eV in pure Ni to 0.47 eV, 0.52 eV, and 0.46 eV, respectively, in the presence of Si, P, and S impurities, which speeds up H diffusion. We rationalize this by comparing the bonding character of the saddle point configuration and changes in the electronic structure of Ni for each system. Notably, these analyses correlate the lower values of the activation energies to a local atomic strain in a Ni lattice. Our DFT study also validates the hypothesis of Berkowitz and Kane that P increases the H diffusion and, thereby, significantly increases H embrittlement susceptibility of Ni. We report a similar effect for Si and S impurities in Ni. Published under license by AIP Publishing.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel
    Di Stefano, Davide
    Mrovec, Matous
    Elsaesser, Christian
    ACTA MATERIALIA, 2015, 98 : 306 - 312
  • [2] First-principles nickel database: Energetics of impurities and defects
    Connetable, Damien
    Andrieu, Eric
    Monceau, Daniel
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 101 : 77 - 87
  • [3] Stress effects on stability and diffusion behavior of sulfur impurity in nickel: A first-principles study
    Dong, Nan
    Zhang, Caili
    Liu, Hui
    Li, Juan
    Wu, Xiaolei
    Han, Peide
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 90 : 137 - 142
  • [4] Hydrogen influence on diffusion in nickel from first-principles calculations
    Wang, Yu
    Connetable, D.
    Tanguy, D.
    PHYSICAL REVIEW B, 2015, 91 (09):
  • [5] First-principles study of diffusion and interactions of vacancies and hydrogen in hcp-titanium
    Connetable, Damien
    Huez, Julitte
    Andrieu, Eric
    Mijoule, Claude
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (40)
  • [6] Diffusion of tellurium at nickel grain boundaries: a first-principles study
    Wang, C. Y.
    Han, H.
    Wickramaratne, D.
    Zhang, W.
    Wang, H.
    Ye, X. X.
    Guo, Y. L.
    Shao, K.
    Huai, P.
    RSC ADVANCES, 2017, 7 (14): : 8421 - 8428
  • [7] Intergranular fracture of tungsten containing phosphorus impurities: A first principles investigation
    Olsson, Par A. T.
    Blomqvist, Jakob
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 139 : 368 - 378
  • [8] Segregation of hydrogen to defects in nickel using first-principles calculations: The case of self-interstitials and cavities
    Connetable, Damien
    Wang, Yu
    Tanguy, Doeme
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 614 : 211 - 220
  • [9] Sulfur-induced embrittlement of nickel: a first-principles study
    Schusteritsch, Georg
    Kaxiras, Efthimios
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2012, 20 (06)
  • [10] First-principles study of hydrogen diffusion in alpha Ti
    Han, X. L.
    Wang, Q.
    Sun, D. L.
    Sun, T.
    Guo, Q.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (09) : 3983 - 3987