NONLINEAR DIRAC EQUATION ON GRAPHS WITH LOCALIZED NONLINEARITIES: BOUND STATES AND NONRELATIVISTIC LIMIT

被引:24
|
作者
Borrelli, William [1 ]
Carlone, Raffaele [2 ]
Tentarelli, Lorenzo [2 ]
机构
[1] Univ Paris 09, PSL Res Univ, CNRS, UMR 7534, F-75016 Paris, France
[2] Univ Federico II Napoli, Dipartimento Matemat & Applicaz R Caccioppoli, MSA, Via Cinthia, I-80126 Naples, Italy
关键词
nonlinear Dirac equations; metric graphs; nonrelativistic limit; variational methods; bound states; linking; GROUND-STATES; NLS EQUATION; SCHRODINGER-EQUATION; STATIONARY SOLUTIONS; STANDING WAVES; QUANTUM GRAPHS; METRIC GRAPHS; STABILITY; COMPACT; OPERATOR;
D O I
10.1137/18M1211714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the nonlinear Dirac (NLD) equation on noncompact metric graphs with localized Kerr nonlinearities, in the case of Kirchhoff-type conditions at the vertices. Precisely, we discuss existence and multiplicity of the bound states (arising as critical points of the NLD action functional) and we prove that, in the L-2-subcritical case, they converge to the bound states of the nonlinear Schrodinger equation in the nonrelativistic limit.
引用
收藏
页码:1046 / 1081
页数:36
相关论文
共 50 条
  • [41] Localized Nonlinear Waves in Nonlinear Schrodinger Equation with Nonlinearities Modulated in Space and Time
    Chen, Junchao
    Li, Biao
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (12): : 728 - 734
  • [42] A UNIFORMLY ACCURATE MULTISCALE TIME INTEGRATOR PSEUDOSPECTRAL METHOD FOR THE DIRAC EQUATION IN THE NONRELATIVISTIC LIMIT REGIME
    Bao, Weizhu
    Cai, Yongyong
    Jia, Xiaowei
    Tang, Qinglin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1785 - 1812
  • [43] UNIFORMLY ACCURATE NESTED PICARD ITERATIVE INTEGRATORS FOR THE NONLINEAR DIRAC EQUATION IN THE NONRELATIVISTIC REGIME
    Cai, Yongyong
    Wang, Yan
    MULTISCALE MODELING & SIMULATION, 2022, 20 (01): : 164 - 187
  • [44] Bound states of the Dirac equation with vector and scalar Eckart potentials
    Zou, X
    Yi, LZ
    Jia, CS
    PHYSICS LETTERS A, 2005, 346 (1-3) : 54 - 64
  • [45] Almost global existence for the nonlinear Klein-Gordon equation in the nonrelativistic limit
    Pasquali, S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [46] Bound states for Dirac equation with Wood-Saxon potential
    Chen, G
    ACTA PHYSICA SINICA, 2004, 53 (03) : 680 - 683
  • [47] Bound states for Dirac equation with Wood-Saxon potential
    Chen, Gang
    Wuli Xuebao/Acta Physica Sinica, 2004, 53 (03): : 680 - 683
  • [48] Bound states of Dirac equation using the proper quantization rule
    Bachi, H.
    Touloum, S.
    Ighezou, F. Z.
    Gharbi, A.
    PHYSICA SCRIPTA, 2021, 96 (07)
  • [49] ON THE ROTATING NONLINEAR KLEIN-GORDON EQUATION: NONRELATIVISTIC LIMIT AND NUMERICAL METHODS
    Mauser, Norbert J.
    Zhang, Yong
    Zhao, Xiaofei
    MULTISCALE MODELING & SIMULATION, 2020, 18 (02): : 999 - 1024
  • [50] The nonlinear Schrodinger equation as a macroscopic limit for an oscillator chain with cubic nonlinearities
    Giannoulis, J
    Mielke, A
    NONLINEARITY, 2004, 17 (02) : 551 - 565