NONLINEAR DIRAC EQUATION ON GRAPHS WITH LOCALIZED NONLINEARITIES: BOUND STATES AND NONRELATIVISTIC LIMIT

被引:25
作者
Borrelli, William [1 ]
Carlone, Raffaele [2 ]
Tentarelli, Lorenzo [2 ]
机构
[1] Univ Paris 09, PSL Res Univ, CNRS, UMR 7534, F-75016 Paris, France
[2] Univ Federico II Napoli, Dipartimento Matemat & Applicaz R Caccioppoli, MSA, Via Cinthia, I-80126 Naples, Italy
关键词
nonlinear Dirac equations; metric graphs; nonrelativistic limit; variational methods; bound states; linking; GROUND-STATES; NLS EQUATION; SCHRODINGER-EQUATION; STATIONARY SOLUTIONS; STANDING WAVES; QUANTUM GRAPHS; METRIC GRAPHS; STABILITY; COMPACT; OPERATOR;
D O I
10.1137/18M1211714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the nonlinear Dirac (NLD) equation on noncompact metric graphs with localized Kerr nonlinearities, in the case of Kirchhoff-type conditions at the vertices. Precisely, we discuss existence and multiplicity of the bound states (arising as critical points of the NLD action functional) and we prove that, in the L-2-subcritical case, they converge to the bound states of the nonlinear Schrodinger equation in the nonrelativistic limit.
引用
收藏
页码:1046 / 1081
页数:36
相关论文
共 54 条
[21]   THE FREE DIRAC OPERATOR ON COMPACT AND NONCOMPACT GRAPHS [J].
BULLA, W ;
TRENKLER, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (05) :1157-1163
[22]   Variational and Stability Properties of Constant Solutions to the NLS Equation on Compact Metric Graphs [J].
Cacciapuoti, Claudio ;
Dovetta, Simone ;
Serra, Enrico .
MILAN JOURNAL OF MATHEMATICS, 2018, 86 (02) :305-327
[23]   Ground state and orbital stability for the NLS equation on a general starlike graph with potentials [J].
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
NONLINEARITY, 2017, 30 (08) :3271-3303
[24]   THE ONE-DIMENSIONAL DIRAC EQUATION WITH CONCENTRATED NONLINEARITY [J].
Cacciapuoti, Claudio ;
Carlone, Raffaele ;
Noja, Diego ;
Posilicano, Andrea .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (03) :2246-2268
[25]   Topology-induced bifurcations for the nonlinear Schrodinger equation on the tadpole graph [J].
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
PHYSICAL REVIEW E, 2015, 91 (01)
[26]   On the spectral theory of Gesztesy-Seba realizations of 1-D Dirac operators with point interactions on a discrete set [J].
Carlone, Raffaele ;
Malamud, Mark ;
Posilicano, Andrea .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (09) :3835-3902
[27]  
Dovetta S, 2019, CALC VAR PARTIAL DIF, V58, DOI 10.1007/s00526-019-1565-5
[28]   Existence of infinitely many stationary solutions of the L2-subcritical and critical NLSE on compact metric graphs [J].
Dovetta, Simone .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (07) :4806-4821
[29]   STATIONARY STATES OF THE NONLINEAR DIRAC-EQUATION - A VARIATIONAL APPROACH [J].
ESTEBAN, MJ ;
SERE, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (02) :323-350
[30]   Nonrelativistic limit of the Dirac-Fock equations [J].
Esteban, MJ ;
Séré, E .
ANNALES HENRI POINCARE, 2001, 2 (05) :941-961