NONLINEAR DIRAC EQUATION ON GRAPHS WITH LOCALIZED NONLINEARITIES: BOUND STATES AND NONRELATIVISTIC LIMIT

被引:25
作者
Borrelli, William [1 ]
Carlone, Raffaele [2 ]
Tentarelli, Lorenzo [2 ]
机构
[1] Univ Paris 09, PSL Res Univ, CNRS, UMR 7534, F-75016 Paris, France
[2] Univ Federico II Napoli, Dipartimento Matemat & Applicaz R Caccioppoli, MSA, Via Cinthia, I-80126 Naples, Italy
关键词
nonlinear Dirac equations; metric graphs; nonrelativistic limit; variational methods; bound states; linking; GROUND-STATES; NLS EQUATION; SCHRODINGER-EQUATION; STATIONARY SOLUTIONS; STANDING WAVES; QUANTUM GRAPHS; METRIC GRAPHS; STABILITY; COMPACT; OPERATOR;
D O I
10.1137/18M1211714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the nonlinear Dirac (NLD) equation on noncompact metric graphs with localized Kerr nonlinearities, in the case of Kirchhoff-type conditions at the vertices. Precisely, we discuss existence and multiplicity of the bound states (arising as critical points of the NLD action functional) and we prove that, in the L-2-subcritical case, they converge to the bound states of the nonlinear Schrodinger equation in the nonrelativistic limit.
引用
收藏
页码:1046 / 1081
页数:36
相关论文
共 54 条
[1]   Multiple positive bound states for the subcritical NLS equation on metric graphs [J].
Adami, Riccardo ;
Serra, Enrico ;
Tilli, Paolo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[2]   Negative Energy Ground States for the L2-Critical NLSE on Metric Graphs [J].
Adami, Riccardo ;
Serra, Enrico ;
Tilli, Paolo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 352 (01) :387-406
[3]   Threshold phenomena and existence results for NLS ground states on metric graphs [J].
Adami, Riccardo ;
Serra, Enrico ;
Tilli, Paolo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) :201-223
[4]   NLS ground states on graphs [J].
Adami, Riccardo ;
Serra, Enrico ;
Tilli, Paolo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) :743-761
[5]   Dirac-Krein Systems on Star Graphs [J].
Adamyan, V. ;
Langer, H. ;
Tretter, C. ;
Winklmeier, M. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 86 (01) :121-150
[6]   A remark on Krein's resolvent formula and boundary conditions [J].
Albeverio, S ;
Pankrashkin, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (22) :4859-4864
[7]  
[Anonymous], ARXIV180309246MATHAP
[8]  
[Anonymous], 1972, METHODS MODERN MATH, DOI DOI 10.1016/B978-0-12-585001-8.50008-8
[9]  
[Anonymous], 2003, SOBOLEV SPACES
[10]  
[Anonymous], 2018, J MATH PHYS, DOI DOI 10.1063/1.5005998