Collision-dominated nonlinear hydrodynamics in graphene

被引:84
作者
Briskot, U. [1 ,2 ]
Schuett, M. [3 ]
Gornyi, I. V. [1 ,2 ,4 ]
Titov, M. [5 ]
Narozhny, B. N. [2 ,6 ]
Mirlin, A. D. [1 ,2 ,7 ]
机构
[1] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Theoret Condensed Matter Phys, D-76128 Karlsruhe, Germany
[3] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[4] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[5] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[6] Natl Res Nucl Univ, Moscow Engn Phys Inst, Moscow 115409, Russia
[7] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia
关键词
ELECTRICAL-CONDUCTIVITY; INTERACTING FERMIONS; THERMAL CONDUCTION; MONATOMIC GAS; PLASMONS; HETEROSTRUCTURES; VISCOSITY;
D O I
10.1103/PhysRevB.92.115426
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an effective hydrodynamic theory of electronic transport in graphene in the interaction-dominated regime. We derive the emergent hydrodynamic description from the microscopic Boltzmann kinetic equation taking into account dissipation due to Coulomb interaction and find the viscosity of Dirac fermions in graphene for arbitrary densities. The viscous terms have a dramatic effect on transport coefficients in clean samples at high temperatures. Within linear response, we show that viscosity manifests itself in the nonlocal conductivity as well as dispersion of hydrodynamic plasmons. Beyond linear response, we apply the derived nonlinear hydrodynamics to the problem of hot-spot relaxation in graphene.
引用
收藏
页数:16
相关论文
共 59 条
[51]   Hydrodynamic electron transport and nonlinear waves in graphene [J].
Svintsov, D. ;
Vyurkov, V. ;
Ryzhii, V. ;
Otsuji, T. .
PHYSICAL REVIEW B, 2013, 88 (24)
[52]   Hydrodynamic model for electron-hole plasma in graphene [J].
Svintsov, D. ;
Vyurkov, V. ;
Yurchenko, S. ;
Otsuji, T. ;
Ryzhii, V. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (08)
[53]  
Taychatanapat T, 2013, NAT PHYS, V9, P225, DOI [10.1038/NPHYS2549, 10.1038/nphys2549]
[54]   Giant Magnetodrag in Graphene at Charge Neutrality [J].
Titov, M. ;
Gorbachev, R. V. ;
Narozhny, B. N. ;
Tudorovskiy, T. ;
Schuett, M. ;
Ostrovsky, P. M. ;
Gornyi, I. V. ;
Mirlin, A. D. ;
Katsnelson, M. I. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ponomarenko, L. A. .
PHYSICAL REVIEW LETTERS, 2013, 111 (16)
[55]   Corbino Disk Viscometer for 2D Quantum Electron Liquids [J].
Tomadin, Andrea ;
Vignale, Giovanni ;
Polini, Marco .
PHYSICAL REVIEW LETTERS, 2014, 113 (23)
[56]   Theory of the plasma-wave photoresponse of a gated graphene sheet [J].
Tomadin, Andrea ;
Polini, Marco .
PHYSICAL REVIEW B, 2013, 88 (20)
[57]   Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening [J].
Tomadin, Andrea ;
Brida, Daniele ;
Cerullo, Giulio ;
Ferrari, Andrea C. ;
Polini, Marco .
PHYSICAL REVIEW B, 2013, 88 (03)
[58]  
Woessner A, 2015, NAT MATER, V14, P421, DOI [10.1038/nmat4169, 10.1038/NMAT4169]
[59]  
Zala G, 2001, PHYS REV B, V64, DOI [10.1103/PhysRevB.64.214204, 10.1103/PhysRevLett.87.214204]