Collision-dominated nonlinear hydrodynamics in graphene

被引:84
作者
Briskot, U. [1 ,2 ]
Schuett, M. [3 ]
Gornyi, I. V. [1 ,2 ,4 ]
Titov, M. [5 ]
Narozhny, B. N. [2 ,6 ]
Mirlin, A. D. [1 ,2 ,7 ]
机构
[1] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Theoret Condensed Matter Phys, D-76128 Karlsruhe, Germany
[3] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[4] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[5] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[6] Natl Res Nucl Univ, Moscow Engn Phys Inst, Moscow 115409, Russia
[7] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia
关键词
ELECTRICAL-CONDUCTIVITY; INTERACTING FERMIONS; THERMAL CONDUCTION; MONATOMIC GAS; PLASMONS; HETEROSTRUCTURES; VISCOSITY;
D O I
10.1103/PhysRevB.92.115426
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an effective hydrodynamic theory of electronic transport in graphene in the interaction-dominated regime. We derive the emergent hydrodynamic description from the microscopic Boltzmann kinetic equation taking into account dissipation due to Coulomb interaction and find the viscosity of Dirac fermions in graphene for arbitrary densities. The viscous terms have a dramatic effect on transport coefficients in clean samples at high temperatures. Within linear response, we show that viscosity manifests itself in the nonlocal conductivity as well as dispersion of hydrodynamic plasmons. Beyond linear response, we apply the derived nonlinear hydrodynamics to the problem of hot-spot relaxation in graphene.
引用
收藏
页数:16
相关论文
共 59 条
[1]   Giant Nonlocality Near the Dirac Point in Graphene [J].
Abanin, D. A. ;
Morozov, S. V. ;
Ponomarenko, L. A. ;
Gorbachev, R. V. ;
Mayorov, A. S. ;
Katsnelson, M. I. ;
Watanabe, K. ;
Taniguchi, T. ;
Novoselov, K. S. ;
Levitov, L. S. ;
Geim, A. K. .
SCIENCE, 2011, 332 (6027) :328-330
[2]   Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns [J].
Alonso-Gonzalez, P. ;
Nikitin, A. Y. ;
Golmar, F. ;
Centeno, A. ;
Pesquera, A. ;
Velez, S. ;
Chen, J. ;
Navickaite, G. ;
Koppens, F. ;
Zurutuza, A. ;
Casanova, F. ;
Hueso, L. E. ;
Hillenbrand, R. .
SCIENCE, 2014, 344 (6190) :1369-1373
[3]  
[Anonymous], Fluid Mechanics
[4]  
[Anonymous], 1990, The Superfluid Phases of Helium 3
[5]   Transport coefficients in high temperature gauge theories, 1. Leading-log results [J].
Arnold, P ;
Moore, GD ;
Yaffe, LG .
JOURNAL OF HIGH ENERGY PHYSICS, 2000, (11)
[6]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[7]   Colloquium: Graphene spectroscopy [J].
Basov, D. N. ;
Fogler, M. M. ;
Lanzara, A. ;
Wang, Feng ;
Zhang, Yuanbo .
REVIEWS OF MODERN PHYSICS, 2014, 86 (03) :959-994
[10]   Optical nano-imaging of gate-tunable graphene plasmons [J].
Chen, Jianing ;
Badioli, Michela ;
Alonso-Gonzalez, Pablo ;
Thongrattanasiri, Sukosin ;
Huth, Florian ;
Osmond, Johann ;
Spasenovic, Marko ;
Centeno, Alba ;
Pesquera, Amaia ;
Godignon, Philippe ;
Zurutuza Elorza, Amaia ;
Camara, Nicolas ;
Javier Garcia de Abajo, F. ;
Hillenbrand, Rainer ;
Koppens, Frank H. L. .
NATURE, 2012, 487 (7405) :77-81