Small-amplitude limit cycle bifurcations for Lienard systems with quadratic or cubic damping or restoring forces

被引:74
作者
Christopher, C [1 ]
Lynch, S
机构
[1] Univ Plymouth, Sch Math & Stat, Plymouth PL4 8AA, Devon, England
[2] Manchester Metropolitan Univ, Dept Comp & Math, Manchester M1 5GD, Lancs, England
关键词
D O I
10.1088/0951-7715/12/4/321
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the second-order equation x + f(x)(x)over dot + g(x) = 0, (g(0) = 0, g'(0) > 0), where f and g are polynomials with deg f, deg g less than or equal to n. Our interest is in the maximum number of isolated periodic solutions which can bifurcate from the steady state solution x = 0. Alternatively, this is equivalent to seeking the maximum number of limit cycles which can bifurcate from the origin for the Lienard system, (x)over dot = y, (y)over dot = -g(x) - yf(x). Assuming the origin is not a centre, we show that if either f or g are quadratic, then this number is [2n+1/3]. If f or g are cubic we show that this number is 2[3(n+2)/8], for all 1 < n less than or equal to 50. The results also hold for generalized Lienard systems.
引用
收藏
页码:1099 / 1112
页数:14
相关论文
共 24 条
[1]   THE NUMBER OF SMALL-AMPLITUDE LIMIT-CYCLES OF LIENARD EQUATIONS [J].
BLOWS, TR ;
LLOYD, NG .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 95 (MAR) :359-366
[3]   POLYNOMIAL SYSTEMS - A LOWER-BOUND FOR THE HILBERT-NUMBERS [J].
CHRISTOPHER, CJ ;
LLOYD, NG .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 450 (1938) :219-224
[4]   Small-amplitude limit cycles in polynomial Lienard systems [J].
Christopher, Colin J. ;
Lloyd, Noel G. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 3 (02) :183-190
[5]   CUBIC LIENARD EQUATIONS WITH LINEAR DAMPING [J].
DUMORTIER, F ;
ROUSSEAU, C .
NONLINEARITY, 1990, 3 (04) :1015-1039
[6]   On the uniqueness of limit cycles surrounding one or more singularities for Lienard equations [J].
Dumortier, F ;
Li, CZ .
NONLINEARITY, 1996, 9 (06) :1489-1500
[7]   Quadratic Lienard equations with quadratic damping [J].
Dumortier, F ;
Li, CZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 139 (01) :41-59
[8]   Improving a method for the study of limit cycles of the Lienard equation [J].
Giacomini, H ;
Neukirch, S .
PHYSICAL REVIEW E, 1998, 57 (06) :6573-6576
[9]   Number of limit cycles of the Lienard equation [J].
Giacomini, H ;
Neukirch, S .
PHYSICAL REVIEW E, 1997, 56 (04) :3809-3813
[10]  
HAN M, 1998, MAXIMAL NUMBER LIMIT