Approximation of the p-Stokes Equations with Equal-Order Finite Elements

被引:27
作者
Hirn, Adrian [1 ]
机构
[1] Heidelberg Univ, Inst Angew Math, D-69120 Heidelberg, Germany
关键词
Non-Newtonian fluids; shear-rate-dependent viscosity; finite element method; local projection stabilization; error analysis; SHEAR-DEPENDENT VISCOSITY; NEWTONIAN FLOW; SOBOLEV SPACES; DECOMPOSITION; CONVERGENCE; REGULARITY; CARREAU; FLUIDS;
D O I
10.1007/s00021-012-0095-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Non-Newtonian fluid motions are often modeled by the p-Stokes equations with power-law exponent . In the present paper we study the discretization of the p-Stokes equations with equal-order finite elements. We propose a stabilization scheme for the pressure-gradient based on local projections. For the well-posedness of the discrete problems is shown and a priori error estimates are proven. For the derived a priori error estimates provide optimal rates of convergence with respect to the supposed regularity of the solution. The achieved results are illustrated by numerical experiments.
引用
收藏
页码:65 / 88
页数:24
相关论文
共 20 条
[1]  
AMROUCHE C, 1994, CZECH MATH J, V44, P109
[2]  
[Anonymous], FIN EL TOOLK
[3]   NUMERICAL-ANALYSIS OF QUASI-NEWTONIAN FLOW OBEYING THE POWER LOW OR THE CARREAU FLOW [J].
BARANGER, J ;
NAJIB, K .
NUMERISCHE MATHEMATIK, 1990, 58 (01) :35-49
[4]   FINITE-ELEMENT ERROR ANALYSIS OF A QUASI-NEWTONIAN FLOW OBEYING THE CARREAU OR POWER-LAW [J].
BARRETT, JW ;
LIU, WB .
NUMERISCHE MATHEMATIK, 1993, 64 (04) :433-453
[5]   QUASI-NORM ERROR-BOUNDS FOR THE FINITE-ELEMENT APPROXIMATION OF A NON-NEWTONIAN FLOW [J].
BARRETT, JW ;
LIU, WB .
NUMERISCHE MATHEMATIK, 1994, 68 (04) :437-456
[6]   A finite element pressure gradient stabilization for the Stokes equations based on local projections [J].
Becker, R ;
Braack, M .
CALCOLO, 2001, 38 (04) :173-199
[7]   ON THE FINITE ELEMENT APPROXIMATION OF p-STOKES SYSTEMS [J].
Belenki, L. ;
Berselli, L. C. ;
Diening, L. ;
Ruzicka, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) :373-397
[8]   Existence of Strong Solutions for Incompressible Fluids with Shear Dependent Viscosities [J].
Berselli, Luigi C. ;
Diening, Lars ;
Ruzicka, Michael .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (01) :101-132
[9]  
Brenner S. C., 2007, MATH THEORY FINITE E
[10]   Interpolation operators in Orlicz-Sobolev spaces [J].
Diening, L. ;
Ruzicka, M. .
NUMERISCHE MATHEMATIK, 2007, 107 (01) :107-129