Metabolomics in Epidemiology: Sources of Variability in Metabolite Measurements and Implications

被引:134
作者
Sampson, Joshua N. [1 ]
Boca, Simina M. [1 ]
Shu, Xiao Ou [2 ,3 ]
Stolzenberg-Solomon, Rachael Z. [1 ]
Matthews, Charles E. [1 ]
Hsing, Ann W. [4 ,5 ]
Tan, Yu Ting [6 ]
Ji, Bu-Tian [1 ]
Chow, Wong-Ho [7 ]
Cai, Qiuyin [2 ,3 ]
Liu, Da Ke [6 ]
Yang, Gong [2 ,3 ]
Xiang, Yong Bing [6 ]
Zheng, Wei [2 ,3 ]
Sinha, Rashmi [1 ]
Cross, Amanda J. [1 ]
Moore, Steven C. [1 ]
机构
[1] NCI, Div Canc Epidemiol & Genet, Bethesda, MD 20892 USA
[2] Vanderbilt Epidemiol Ctr, Inst Med & Publ Hlth, Dept Med, Div Epidemiol, Nashville, TN USA
[3] Vanderbilt Univ, Sch Med, Vanderbilt Ingram Canc Ctr, Nashville, TN 37212 USA
[4] Canc Prevent Inst Calif, Fremont, CA USA
[5] Stanford Canc Inst, Palo Alto, CA USA
[6] Shanghai Canc Inst, Shanghai, Peoples R China
[7] Univ Texas MD Anderson Canc Ctr, Houston, TX 77030 USA
关键词
POSTMENOPAUSAL WOMEN; BREAST-CANCER; PROFILES; PLASMA; BIOMARKERS; PROSTATE; RISK; REPRODUCIBILITY; PREMENOPAUSAL; INSULIN;
D O I
10.1158/1055-9965.EPI-12-1109
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Metabolite levels within an individual vary over time. This within-individual variability, coupled with technical variability, reduces the power for epidemiologic studies to detect associations with disease. Here, the authors assess the variability of a large subset of metabolites and evaluate the implications for epidemiologic studies. Methods: Using liquid chromatography/mass spectrometry (LC/MS) and gas chromatography-mass spectroscopy (GC/MS) platforms, 385 metabolites were measured in 60 women at baseline and year-one of the Shanghai Physical Activity Study, and observed patterns were confirmed in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening study. Results: Although the authors found high technical reliability (median intraclass correlation = 0.8), reliability over time within an individual was low. Taken together, variability in the assay and variability within the individual accounted for the majority of variability for 64% of metabolites. Given this, a metabolite would need, on average, a relative risk of 3 (comparing upper and lower quartiles of "usual" levels) or 2 (comparing quartiles of observed levels) to be detected in 38%, 74%, and 97% of studies including 500, 1,000, and 5,000 individuals. Age, gender, and fasting status factors, which are often of less interest in epidemiologic studies, were associated with 30%, 67%, and 34% of metabolites, respectively, but the associations were weak and explained only a small proportion of the total metabolite variability. Conclusion: Metabolomics will require large, but feasible, sample sizes to detect the moderate effect sizes typical for epidemiologic studies. Impact: We offer guidelines for determining the sample sizes needed to conduct metabolomic studies in epidemiology. Cancer Epidemiol Biomarkers Prev; 22(4); 631-40. (C) 2013 AACR.
引用
收藏
页码:631 / 640
页数:10
相关论文
共 41 条
[31]   Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression [J].
Sreekumar, Arun ;
Poisson, Laila M. ;
Rajendiran, Thekkelnaycke M. ;
Khan, Amjad P. ;
Cao, Qi ;
Yu, Jindan ;
Laxman, Bharathi ;
Mehra, Rohit ;
Lonigro, Robert J. ;
Li, Yong ;
Nyati, Mukesh K. ;
Ahsan, Aarif ;
Kalyana-Sundaram, Shanker ;
Han, Bo ;
Cao, Xuhong ;
Byun, Jaeman ;
Omenn, Gilbert S. ;
Ghosh, Debashis ;
Pennathur, Subramaniam ;
Alexander, Danny C. ;
Berger, Alvin ;
Shuster, Jeffrey R. ;
Wei, John T. ;
Varambally, Sooryanarayana ;
Beecher, Christopher ;
Chinnaiyan, Arul M. .
NATURE, 2009, 457 (7231) :910-914
[32]   Human metabolic individuality in biomedical and pharmaceutical research [J].
Suhre, Karsten ;
Shin, So-Youn ;
Petersen, Ann-Kristin ;
Mohney, Robert P. ;
Meredith, David ;
Waegele, Brigitte ;
Altmaier, Elisabeth ;
Deloukas, Panos ;
Erdmann, Jeanette ;
Grundberg, Elin ;
Hammond, Christopher J. ;
Hrabe de Angelis, Martin ;
Kastenmueller, Gabi ;
Koettgen, Anna ;
Kronenberg, Florian ;
Mangino, Massimo ;
Meisinger, Christa ;
Meitinger, Thomas ;
Mewes, Hans-Werner ;
Milburn, Michael V. ;
Prehn, Cornelia ;
Raffler, Johannes ;
Ried, Janina S. ;
Roemisch-Margl, Werner ;
Samani, Nilesh J. ;
Small, Kerrin S. ;
Wichmann, H. -Erich ;
Zhai, Guangju ;
Illig, Thomas ;
Spector, Tim D. ;
Adamski, Jerzy ;
Soranzo, Nicole ;
Gieger, Christian .
NATURE, 2011, 477 (7362) :54-U60
[33]   Metabolic Footprint of Diabetes: A Multiplatform Metabolomics Study in an Epidemiological Setting [J].
Suhre, Karsten ;
Meisinger, Christa ;
Doering, Angela ;
Altmaier, Elisabeth ;
Belcredi, Petra ;
Gieger, Christian ;
Chang, David ;
Milburn, Michael V. ;
Gall, Walter E. ;
Weinberger, Klaus M. ;
Mewes, Hans-Werner ;
de Angelis, Martin Hrabe ;
Wichmann, H. -Erich ;
Kronenberg, Florian ;
Adamski, Jerzy ;
Illig, Thomas .
PLOS ONE, 2010, 5 (11)
[34]   Orthogonal projections to latent structures (O-PLS) [J].
Trygg, J ;
Wold, S .
JOURNAL OF CHEMOMETRICS, 2002, 16 (03) :119-128
[35]   Collection, processing, and storage of biological samples in epidemiologic studies: Sex hormones, carotenoids, inflammatory markers, and proteomics as examples [J].
Tworoger, Shelley S. ;
Hankinson, Susan E. .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2006, 15 (09) :1578-1581
[36]   Effects of menstrual cycle phase on metabolomic profiles in premenopausal women [J].
Wallace, M. ;
Hashim, Y. Z. H. -Y. ;
Wingfield, M. ;
Culliton, M. ;
McAuliffe, F. ;
Gibney, M. J. ;
Brennan, L. .
HUMAN REPRODUCTION, 2010, 25 (04) :949-956
[37]   Metabolite profiles and the risk of developing diabetes [J].
Wang, Thomas J. ;
Larson, Martin G. ;
Vasan, Ramachandran S. ;
Cheng, Susan ;
Rhee, Eugene P. ;
McCabe, Elizabeth ;
Lewis, Gregory D. ;
Fox, Caroline S. ;
Jacques, Paul F. ;
Fernandez, Celine ;
O'Donnell, Christopher J. ;
Carr, Stephen A. ;
Mootha, Vamsi K. ;
Florez, Jose C. ;
Souza, Amanda ;
Melander, Olle ;
Clish, Clary B. ;
Gerszten, Robert E. .
NATURE MEDICINE, 2011, 17 (04) :448-U83
[38]   Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease [J].
Wang, Zeneng ;
Klipfell, Elizabeth ;
Bennett, Brian J. ;
Koeth, Robert ;
Levison, Bruce S. ;
Dugar, Brandon ;
Feldstein, Ariel E. ;
Britt, Earl B. ;
Fu, Xiaoming ;
Chung, Yoon-Mi ;
Wu, Yuping ;
Schauer, Phil ;
Smith, Jonathan D. ;
Allayee, Hooman ;
Tang, W. H. Wilson ;
DiDonato, Joseph A. ;
Lusis, Aldons J. ;
Hazen, Stanley L. .
NATURE, 2011, 472 (7341) :57-U82
[39]   HMDB: the human metabolome database [J].
Wishart, David S. ;
Tzur, Dan ;
Knox, Craig ;
Eisner, Roman ;
Guo, An Chi ;
Young, Nelson ;
Cheng, Dean ;
Jewell, Kevin ;
Arndt, David ;
Sawhney, Summit ;
Fung, Chris ;
Nikolai, Lisa ;
Lewis, Mike ;
Coutouly, Marie-Aude ;
Forsythe, Ian ;
Tang, Peter ;
Shrivastava, Savita ;
Jeroncic, Kevin ;
Stothard, Paul ;
Amegbey, Godwin ;
Block, David ;
Hau, David D. ;
Wagner, James ;
Miniaci, Jessica ;
Clements, Melisa ;
Gebremedhin, Mulu ;
Guo, Natalie ;
Zhang, Ying ;
Duggan, Gavin E. ;
MacInnis, Glen D. ;
Weljie, Alim M. ;
Dowlatabadi, Reza ;
Bamforth, Fiona ;
Clive, Derrick ;
Greiner, Russ ;
Li, Liang ;
Marrie, Tom ;
Sykes, Brian D. ;
Vogel, Hans J. ;
Querengesser, Lori .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D521-D526
[40]  
Yu ZY, 2011, PLOS ONE, V6, DOI [10.1371/journal.pone.0015843, 10.1371/journal.pone.0017951]