Geometry of quantum homogeneous vector bundles and representation theory of quantum groups I

被引:15
作者
Gover, AR [1 ]
Zhang, RB
机构
[1] Queensland Univ Technol, Brisbane, Qld, Australia
[2] Univ Adelaide, Dept Pure Math, Adelaide, SA 5005, Australia
关键词
D O I
10.1142/S0129055X99000209
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum homogeneous vector bundles are introduced in the context of Woronowicz type compact quantum groups. The bundles carry natural topologies, and their sections furnish finite type projective modules over algebras of functions on quantum homogeneous spaces. Further properties of the quantum homogeneous vector bundles are investigated, and applied to the study of the geometrical structures of induced representations of quantum groups.
引用
收藏
页码:533 / 552
页数:20
相关论文
共 25 条
[1]   REPRESENTATIONS OF QUANTUM ALGEBRAS [J].
ANDERSEN, HH ;
POLO, P ;
KEXIN, W .
INVENTIONES MATHEMATICAE, 1991, 104 (01) :1-59
[2]  
Baston RJ, 1989, PENROSE TRANSFORM IT
[3]  
BRZEZINSKI T, 1997, QUANTUM DIFFERENTIAL
[4]  
Chari V., 1995, A Guide to Quantum Groups
[5]  
CHU CS, 1996, SOME COMPLEX QUANTUM
[6]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[7]   CQG ALGEBRAS - A DIRECT ALGEBRAIC APPROACH TO COMPACT QUANTUM GROUPS [J].
DIJKHUIZEN, MS ;
KOORNWINDER, TH .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (04) :315-330
[8]   QUANTUM HOMOGENEOUS SPACES, DUALITY AND QUANTUM 2-SPHERES [J].
DIJKHUIZEN, MS ;
KOORNWINDER, TH .
GEOMETRIAE DEDICATA, 1994, 52 (03) :291-315
[9]   Q-DIFFERENCE INTERTWINING-OPERATORS FOR U(Q)(SL(N)) - GENERAL SETTING AND THE CASE N=3 [J].
DOBREV, VK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (14) :4841-4857
[10]  
DRINFELD VG, 1986, P ICM BERKELEY, V1, P789