Machine learning applications in gynecological cancer: A critical review

被引:10
作者
Fiste, Oraianthi [1 ]
Liontos, Michalis [1 ]
Zagouri, Flora [1 ]
Stamatakos, Georgios [2 ]
Dimopoulos, Meletios Athanasios [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Alexandra Hosp, Sch Med, Dept Clin Therapeut, 80 Vasilissis Sophias, Athens 11528, Greece
[2] Natl Tech Univ Athens, Inst Commun & Comp Syst, Sch Elect & Comp Engn, Silico Oncol & Silico Med Grp, Athens, Greece
关键词
Machine Learning; Artificial intelligence; Oncology; Gynecological cancer; ARTIFICIAL-INTELLIGENCE; OVARIAN-CANCER; INTEGRATION; PROGNOSIS; SYSTEMS;
D O I
10.1016/j.critrevonc.2022.103808
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Machine Learning (ML) represents a computer science capable of generating predictive models, by exposure to raw, training data, without being rigidly programmed. Over the last few years, ML has gained attention within the field of oncology, with considerable strides in both diagnostic, predictive, and prognostic spectrum of malignancies, but also as a catalyst of cancer research. In this review, we discuss the state of ML applications on gynecologic oncology and systematically address major technical and ethical concerns, with respect to their realworld medical practice translation. Undoubtedly, advances in ML will enable the analysis of large, rather complex, datasets for improved, cost-effective, and efficient clinical decisions.
引用
收藏
页数:11
相关论文
共 75 条
[1]   New Analytical Approach for the Alignment of Different HE4 Automated Immunometric Systems: An Italian Multicentric Study [J].
Angeloni, Antonio ;
De Vito, Corrado ;
Farina, Antonella ;
Terracciano, Daniela ;
Cennamo, Michele ;
Passerini, Rita ;
Bottari, Fabio ;
Schirinzi, Annalisa ;
Vettori, Roberto ;
Steffan, Agostino ;
Mais, Valerio ;
Coghe, Ferdinando ;
Della Corte, Luigi ;
Bifulco, Giuseppe ;
Baccolini, Valentina ;
Berardelli, Elena ;
Migliara, Giuseppe ;
Anastasi, Emanuela .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (07)
[2]  
[Anonymous], 2019, PROP MOD ART INT GOV
[3]   Artificial intelligence-assisted cytology for detection of cervical intraepithelial neoplasia or invasive cancer: A multicenter, clinical-based, observational study [J].
Bao, Heling ;
Bi, Hui ;
Zhang, Xiaosong ;
Zhao, Yun ;
Dong, Yan ;
Luo, Xiping ;
Zhou, Deping ;
You, Zhixue ;
Wu, Yinglan ;
Liu, Zhaoyang ;
Zhang, Yuping ;
Liu, Juan ;
Fang, Liwen ;
Wang, Linhong .
GYNECOLOGIC ONCOLOGY, 2020, 159 (01) :171-178
[4]   Natural language processing with machine learning to predict outcomes after ovarian cancer surgery [J].
Barber, Emma L. ;
Garg, Ravi ;
Persenaire, Christianne ;
Simon, Melissa .
GYNECOLOGIC ONCOLOGY, 2021, 160 (01) :182-186
[5]   Semi-supervised learning on Riemannian manifolds [J].
Belkin, M ;
Niyogi, P .
MACHINE LEARNING, 2004, 56 (1-3) :209-239
[6]   Artificial intelligence weights the importance of factors predicting complete cytoreduction at secondary cytoreductive surgery for recurrent ovarian cancer [J].
Bogani, Giorgio ;
Rossetti, Diego ;
Ditto, Antonino ;
Martinelli, Fabio ;
Chiappa, Valentina ;
Mosca, Lavinia ;
Maggiore, Umberto Leone Roberti ;
Ferla, Stefano ;
Lorusso, Domenica ;
Raspagliesi, Francesco .
JOURNAL OF GYNECOLOGIC ONCOLOGY, 2018, 29 (05)
[7]   Artificial intelligence in medicine: current trends and future possibilities [J].
Buch, Varun H. ;
Ahmed, Irfan ;
Maruthappu, Mahiben .
BRITISH JOURNAL OF GENERAL PRACTICE, 2018, 68 (668) :143-144
[8]   Implementing Machine Learning in Health Care - Addressing Ethical Challenges [J].
Char, Danton S. ;
Shah, Nigam H. ;
Magnus, David .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (11) :981-983
[9]   iPMI: Machine Learning-Aided Identification of Parametrial Invasion in Women with Early-Stage Cervical Cancer [J].
Charoenkwan, Phasit ;
Shoombuatong, Watshara ;
Nantasupha, Chalaithorn ;
Muangmool, Tanarat ;
Suprasert, Prapaporn ;
Charoenkwan, Kittipat .
DIAGNOSTICS, 2021, 11 (08)
[10]   Screening ovarian cancers with Raman spectroscopy of blood plasma coupled with machine learning data processing [J].
Chen, Fengye ;
Sun, Chen ;
Yue, Zengqi ;
Zhang, Yuqing ;
Xu, Weijie ;
Shabbir, Sahar ;
Zou, Long ;
Lu, Weiguo ;
Wang, Wei ;
Xie, Zhenwei ;
Zhou, Lanyun ;
Lu, Yan ;
Yu, Jin .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 265