Knowledge-Based Automatic Generation of Partitioned Matrix Expressions

被引:0
作者
Fabregat-Traver, Diego [1 ]
Bientinesi, Paolo [1 ]
机构
[1] Rhein Westfal TH Aachen, AICES, Aachen, Germany
来源
COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING | 2011年 / 6885卷
关键词
RECURSIVE BLOCKED ALGORITHMS; SOLVING TRIANGULAR SYSTEMS; SYLVESTER; EQUATIONS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a series of papers it has been shown that for many linear algebra operations it is possible to generate families of algorithms by following a systematic procedure. Although powerful, such a methodology involves complex algebraic manipulation, symbolic computations and pattern matching, making the generation a process challenging to be performed by hand. We aim for a fully automated system that from the sole description of a target operation creates multiple algorithms without any human intervention. Our approach consists of three main stages. The first stage yields the core object for the entire process, the Partitioned Matrix Expression (PME), which establishes how the target problem may be decomposed in terms of simpler sub-problems. In the second stage the PME is inspected to identify predicates, the Loop-Invariants, to be used to set up the skeleton of a family of proofs of correctness. In the third and last stage the actual algorithms are constructed so that each of them satisfies its corresponding proof of correctness. In this paper we focus on the first stage of the process, the automatic generation of Partitioned Matrix Expressions. In particular, we discuss the steps leading to a PME and the knowledge necessary for a symbolic system to perform such steps. We also introduce CLICK, a prototype system written in Mathematica that generates PMEs automatically.
引用
收藏
页码:144 / 157
页数:14
相关论文
共 15 条
  • [1] ANDERSON E., 1999, LAPACK USERSGUIDE, V3rd
  • [2] [Anonymous], SUPERCOMPUTING 1998
  • [3] The science of deriving dense linear algebra algorithms
    Bientinesi, P
    Gunnels, JA
    Myers, ME
    Quintana-Orti, ES
    Van De Geijn, RA
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2005, 31 (01): : 1 - 26
  • [4] Bientinesi P., 2011, SIAM J MATR IN PRESS
  • [5] Bientinesi P., 2003, 11 FLAME U TEX AUST
  • [6] DONGARRA JJ, 1990, ACM T MATH SOFTWARE, V16, P1, DOI 10.1145/77626.79170
  • [7] FLAME Project, FLAME ONL REF
  • [8] The design and implementation of FFTW3
    Frigo, M
    Johnson, SG
    [J]. PROCEEDINGS OF THE IEEE, 2005, 93 (02) : 216 - 231
  • [9] GRIES D, 1992, TEXTS MONOGRAPHS COM
  • [10] Recursive blocked algorithms for solving triangular systems -: Part I:: One-sided and coupled Sylvester-type matrix equations
    Jonsson, I
    Kågström, B
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (04): : 392 - 415