NUMERICAL SOLUTIONS FOR FORWARD BACKWARD DOUBLY STOCHASTIC DIFFERENTIAL EQUATIONS AND ZAKAI EQUATIONS

被引:12
作者
Bao, Feng [1 ]
Cao, Yanzhao [1 ,2 ]
Zhao, Weidong [3 ]
机构
[1] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
[2] Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
[3] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
美国国家科学基金会;
关键词
SPDEs; Zakai equation; backward SDEs; forward backward doubly stochastic differential equations; conditional expectation; SCHEME; DISCRETIZATION; APPROXIMATIONS; IMPLICIT; SYSTEMS;
D O I
10.1615/Int.J.UncertaintyQuantification.2011003508
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The numerical solutions of decoupled forward backward doubly stochastic differential equations and the related stochastic partial differential equations (Zakai equations) are considered. Numerical algorithms are constructed using reference equations. Rate of convergence is obtained through rigorous error analysis. Numerical experiments are carried out to verify the rate of convergence results and to demonstrate the efficiency of the proposed numerical algorithms.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 22 条
[1]  
[Anonymous], STOCHASTICS STOCHAST
[2]  
Briand P, 2001, ELECTRON COMMUN PROB, V6, P1
[3]  
Chvance D., 1996, THESIS U PROVENCE MA
[4]   A particle approximation of the solution of the Kushner-Stratonovitch equation [J].
Crisan, D ;
Lyons, T .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 115 (04) :549-578
[5]   Interacting particle systems approximations of the Kushner-Stratonovitch equation [J].
Crisan, D ;
Del Moral, P ;
Lyons, TJ .
ADVANCES IN APPLIED PROBABILITY, 1999, 31 (03) :819-838
[6]   Nonlinear filtering using random particles [J].
DelMoral, P .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1996, 40 (04) :690-701
[7]  
GAINES JG, 1995, LONDON MATH SOC LECT, V216, P55
[8]   Discretization and simulation of the Zakai equation [J].
Gobet, Emmanuel ;
Pages, Gilles ;
Pham, Huyen ;
Printems, Jacques .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (06) :2505-2538
[9]  
GYONGY I, 1995, STOCH PROC APPL, V58, P57, DOI 10.1016/0304-4149(95)00010-5
[10]   Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II [J].
Gyöngy, I .
POTENTIAL ANALYSIS, 1999, 11 (01) :1-37