A new strategy is proposed for verifying if recovery factor is constant and independent of the real analyte content of samples. A signal-recovery function has been developed on the basis of measurement of spiked test samples before and after a pre-treatment step and considering, as starting point, a recent IUPAC recommendation which distinguishes between two terms-recovery factor, R, and apparent recovery, R*. Apparent recovery includes recovery factor and a new recovery term proposed in a previous paper by the authors, named calibration recovery, R-C. The signal-recovery function is obtained directly from the measured analytical signals instead of from the concentrations, simplifying the calculations. A linear signal-recovery curve indicates that the recovery factor is constant in the analyte concentration range studied experimentally and, in this way, a single recovery factor can be calculated. The usefulness of the proposed method has been shown by quantification of the pesticide carbaryl by two different flow-injection analysis methods with chemiluminescent detection based on the luminol and TCPO systems. Good results were obtained from both methods.