A 0.5358-approximation for Bandpass-2

被引:4
作者
Huang, Liqin [1 ]
Tong, Weitian [2 ]
Goebel, Randy [2 ]
Liu, Tian [3 ]
Lin, Guohui [2 ]
机构
[1] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China
[2] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
[3] Peking Univ, Inst Software, Sch Elect Engn & Comp Sci, Key Lab High Confidence Software Technol,Minist E, Beijing 100871, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
The Bandpass problem; Maximum weight b-matching; Acyclic; 2-matching; Approximation algorithm; Worst case performance ratio; ALGORITHM;
D O I
10.1007/s10878-013-9656-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Bandpass-2 problem is a variant of the maximum traveling salesman problem arising from optical communication networks using wavelength-division multiplexing technology, in which the edge weights are dynamic rather than fixed. The previously best approximation algorithm for this NP-hard problem has a worst-case performance ratio of Here we present a novel scheme to partition the edge set of a 4-matching into a number of subsets, such that the union of each of them and a given matching is an acyclic 2-matching. Such a partition result takes advantage of a known structural property of the optimal solution, leading to a -approximation algorithm for the Bandpass-2 problem.
引用
收藏
页码:612 / 626
页数:15
相关论文
共 20 条
[1]  
[Anonymous], 1984, Upr. Sist.
[2]  
[Anonymous], 2005, Graph Theory
[3]   A POLYNOMIAL ALGORITHM FOR B-MATCHINGS - AN ALTERNATIVE APPROACH [J].
ANSTEE, RP .
INFORMATION PROCESSING LETTERS, 1987, 24 (03) :153-157
[4]   On local search for weighted k-set packing [J].
Arkin, EM ;
Hassin, R .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (03) :640-648
[5]   The bandpass problem: combinatorial optimization and library of problems [J].
Babayev, Djangir A. ;
Bell, George I. ;
Nuriyev, Urfat G. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 18 (02) :151-172
[6]  
Bell GI, 2004, ANN INFORMS M DENV C
[7]  
Chandra B, 1999, PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P169
[8]  
Chen Z-Z, 2012, LNCS, V7402, P185
[9]   Improved deterministic approximation algorithms for Max TSP [J].
Chen, ZZ ;
Okamoto, Y ;
Wang, LS .
INFORMATION PROCESSING LETTERS, 2005, 95 (02) :333-342
[10]  
Gabow HN., 1983, PROC 15 ACM S THEORY, P448, DOI [DOI 10.1145/800061.808776, 10.1145/800061.808776]