Unsupervised Domain Adaptation with Regularized Domain Instance Denoising

被引:9
|
作者
Csurka, Gabriela [1 ]
Chidlowskii, Boris [1 ]
Clinchant, Stephane [1 ]
Michel, Sophia [1 ]
机构
[1] Xerox Res Ctr Europe, 6 Chemin Maupertuis, F-38240 Meylan, France
来源
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III | 2016年 / 9915卷
关键词
Unsupervised domain adaptation; Marginalized Denoising Autoencoder; Sylvester equation; Domain regularization;
D O I
10.1007/978-3-319-49409-8_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose to extend the marginalized denoising autoencoder (MDA) framework with a domain regularization whose aim is to denoise both the source and target data in such a way that the features become domain invariant and the adaptation gets easier. The domain regularization, based either on the maximum mean discrepancy (MMD) measure or on the domain prediction, aims to reduce the distance between the source and the target data. We also exploit the source class labels as another way to regularize the loss, by using a domain classifier regularizer. We show that in these cases, the noise marginalization gets reduced to solving either the linear matrix system AX = B, for which there exists a closed-form solution, or to a Sylvester linear matrix equation AX + XB = C that can be solved efficiently using the Bartels-Stewart algorithm. We did an extensive study on how these regularization terms improve the baseline performance and we present experiments on three image benchmark datasets, conventionally used for domain adaptation methods. We report our findings and comparisons with state-of-the-art methods.
引用
收藏
页码:458 / 466
页数:9
相关论文
共 50 条
  • [31] Towards the Target: Self-regularized Progressive Learning for Unsupervised Domain Adaptation on Semantic Segmentation
    Chang, Jui
    Pang, Yu-Ting
    Hsu, Chiou-Ting
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 299 - 313
  • [32] MANIFOLD ALIGNMENT AND DISTRIBUTION ADAPTATION FOR UNSUPERVISED DOMAIN ADAPTATION
    Li, Ying
    Cheng, Lin
    Peng, Yaxin
    Wen, Zhijie
    Ying, Shihui
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 688 - 693
  • [33] UNSUPERVISED DOMAIN ADAPTATION VIA DOMAIN ADVERSARIAL TRAINING FOR SPEAKER RECOGNITION
    Wang, Qing
    Rao, Wei
    Sun, Sining
    Xie, Lei
    Chng, Eng Siong
    Li, Haizhou
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4889 - 4893
  • [34] Unsupervised Domain Adaptation for Instance Segmentation: Extracting Dwellings in Temporary Settlements Across Various Geographical Settings
    Gella, Getachew Workineh
    Pelletier, Charlotte
    Lefevre, Sebastien
    Wendt, Lorenz
    Tiede, Dirk
    Lang, Stefan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1701 - 1718
  • [35] Unsupervised Domain Adaptation with Joint Domain-Adversarial Reconstruction Networks
    Chen, Qian
    Du, Yuntao
    Tan, Zhiwen
    Zhang, Yi
    Wang, Chongjun
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 : 640 - 656
  • [36] Domain-guided conditional diffusion model for unsupervised domain adaptation
    Zhang, Yulong
    Chen, Shuhao
    Jiang, Weisen
    Zhang, Yu
    Lu, Jiangang
    Kwok, James T.
    NEURAL NETWORKS, 2025, 184
  • [37] Unsupervised domain adaptation for speech recognition with unsupervised error correction
    Mai, Long
    Carson-Berndsen, Julie
    INTERSPEECH 2022, 2022, : 5120 - 5124
  • [38] Unsupervised Domain Adaptation in Semantic Segmentation: A Review
    Toldo, Marco
    Maracani, Andrea
    Michieli, Umberto
    Zanuttigh, Pietro
    TECHNOLOGIES, 2020, 8 (02)
  • [39] DELEGATED ADVERSARIAL TRAINING FOR UNSUPERVISED DOMAIN ADAPTATION
    Kim, Dongwan
    Lee, Seungmin
    Kim, Namil
    Jeong, Seong-Gyun
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2521 - 2525
  • [40] Pseudo Labels for Unsupervised Domain Adaptation: A Review
    Li, Yundong
    Guo, Longxia
    Ge, Yizheng
    ELECTRONICS, 2023, 12 (15)