The impact of bonded interactions on the ground-state geometries of a small flexible polymer

被引:1
作者
Koci, Tomas [1 ]
Qi, Kai [1 ]
Bachmann, Michael [1 ,2 ,3 ]
机构
[1] Univ Georgia, Ctr Simulat Phys, Soft Matter Syst Res Grp, Athens, GA 30602 USA
[2] Univ Fed Mato Grosso, Inst Fis, BR-78060900 Cuiaba, MT, Brazil
[3] Univ Fed Minas Gerais, Dept Fis, BR-31270901 Belo Horizonte, MG, Brazil
来源
XXVII IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (CCP2015) | 2016年 / 759卷
基金
美国国家科学基金会;
关键词
MONTE-CARLO; SIMULATIONS; ALGORITHM;
D O I
10.1088/1742-6596/759/1/012013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bonded interactions in coarse-grained models of elastic polymers are commonly represented by the finitely extensible nonlinear elastic (FENE) potential. In this study, we perform parallel multicanonical Monte Carlo simulations to examine the impact of an additional Lennard-Jones term in the bonded potential on the geometry of ground-state structures of a short polymer. Employing microcanonical inflection point analysis and conformational analysis, we construct a hyper-phase diagram and identify ground-state structures with two distinct geometries.
引用
收藏
页数:7
相关论文
共 12 条
[1]  
Bachmann M., 2014, Thermodynamics and Statistical Mechanics of Macromolecular Systems
[2]   MULTICANONICAL ALGORITHMS FOR 1ST ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICS LETTERS B, 1991, 267 (02) :249-253
[3]  
Bird R. B., 1987, FLUID MECH-SOV RES, V2nd
[4]   Exchange Monte Carlo method and application to spin glass simulations [J].
Hukushima, K ;
Nemoto, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (06) :1604-1608
[5]   Multicanonical Monte Carlo simulations [J].
Janke, W .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 254 (1-2) :164-178
[6]   DYNAMICS OF ENTANGLED LINEAR POLYMER MELTS - A MOLECULAR-DYNAMICS SIMULATION [J].
KREMER, K ;
GREST, GS .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (08) :5057-5086
[7]   Formation of block copolymer micelles in solution: A Monte Carlo study chain length dependence [J].
Milchev, A ;
Bhattacharya, A ;
Binder, K .
MACROMOLECULES, 2001, 34 (06) :1881-1893
[8]   Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble [J].
Neirotti, JP ;
Calvo, F ;
Freeman, DL ;
Doll, JD .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (23) :10340-10349
[9]   Microcanonical entropy inflection points: Key to systematic understanding of transitions in finite systems [J].
Schnabel, Stefan ;
Seaton, Daniel T. ;
Landau, David P. ;
Bachmann, Michael .
PHYSICAL REVIEW E, 2011, 84 (01)
[10]   OPTIMIZED PERTURBATION-THEORY [J].
STEVENSON, PM .
PHYSICAL REVIEW D, 1981, 23 (12) :2916-2944