Multi-rate HMM quantization for speech recognition

被引:0
作者
Vasilache, Marcel [1 ]
机构
[1] Nokia, FIN-33721 Tampere, Finland
来源
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12 | 2008年
关键词
hidden Markov models; quantization; speech recognition;
D O I
10.1109/ICASSP.2008.4518616
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper refines the idea of scalar quantization for hidden Markov model (HMM) parameters which was introduced in an earlier contribution. With the proposed multi-rate approach it is shown that an increased model compression can be achieved with a significant computational complexity reduction while also closely preserving the recognition performance of the original models.
引用
收藏
页码:4341 / 4344
页数:4
相关论文
共 9 条
  • [1] Subspace distribution clustering hidden Markov model
    Bocchieri, E
    Mak, BKW
    [J]. IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2001, 9 (03): : 264 - 275
  • [2] KISS I, 2002, EUROSPEECH SCANDINAV, P1265
  • [3] LEPPANEN J, 2005, INTERSPEECH EUROSPEE, P2965
  • [4] Direct training of subspace distribution clustering hidden Markov model
    Mak, BKW
    Bocchieri, E
    [J]. IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2001, 9 (04): : 378 - 387
  • [5] Tan ZH, 2008, ADV PATTERN RECOGNIT, P1, DOI 10.1007/978-1-84800-143-5
  • [6] VASILACHE M, 2004, ICASSP 2004, P113
  • [7] VASILACHE M, 2000, ICSSLP 2000, P871
  • [8] VASILACHE M, 2001, EUROSPEECH SCANDINAV, P1265
  • [9] Viikki O, 1998, INT CONF ACOUST SPEE, P733, DOI 10.1109/ICASSP.1998.675369