Multi-rate HMM quantization for speech recognition

被引:0
作者
Vasilache, Marcel [1 ]
机构
[1] Nokia, FIN-33721 Tampere, Finland
来源
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12 | 2008年
关键词
hidden Markov models; quantization; speech recognition;
D O I
10.1109/ICASSP.2008.4518616
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper refines the idea of scalar quantization for hidden Markov model (HMM) parameters which was introduced in an earlier contribution. With the proposed multi-rate approach it is shown that an increased model compression can be achieved with a significant computational complexity reduction while also closely preserving the recognition performance of the original models.
引用
收藏
页码:4341 / 4344
页数:4
相关论文
共 9 条
[1]   Subspace distribution clustering hidden Markov model [J].
Bocchieri, E ;
Mak, BKW .
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2001, 9 (03) :264-275
[2]  
KISS I, 2002, EUROSPEECH SCANDINAV, P1265
[3]  
LEPPANEN J, 2005, INTERSPEECH EUROSPEE, P2965
[4]   Direct training of subspace distribution clustering hidden Markov model [J].
Mak, BKW ;
Bocchieri, E .
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2001, 9 (04) :378-387
[5]  
Tan ZH, 2008, ADV PATTERN RECOGNIT, P1, DOI 10.1007/978-1-84800-143-5
[6]  
VASILACHE M, 2004, ICASSP 2004, P113
[7]  
VASILACHE M, 2000, ICSSLP 2000, P871
[8]  
VASILACHE M, 2001, EUROSPEECH SCANDINAV, P1265
[9]  
Viikki O, 1998, INT CONF ACOUST SPEE, P733, DOI 10.1109/ICASSP.1998.675369