Multistability in symmetric chaotic systems

被引:163
作者
Li, C. [1 ]
Hu, W. [2 ]
Sprott, J. C. [3 ]
Wang, X. [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 210016, Peoples R China
[3] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
COEXISTING ATTRACTORS;
D O I
10.1140/epjst/e2015-02475-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chaotic dynamical systems that are symmetric provide the possibility of multistability as well as an independent amplitude control parameter. The Rossler system is used as a candidate for demonstrating the symmetry construction since it is an asymmetric system with a single-scroll attractor. Through the design of symmetric Rossler systems, a symmetric pair of coexisting strange attractors are produced, along with the desired partial or total amplitude control.
引用
收藏
页码:1493 / 1506
页数:14
相关论文
共 25 条
[1]   Co-existing attractors of impact oscillator [J].
Blazejczyk-Okolewska, B ;
Kapitaniak, T .
CHAOS SOLITONS & FRACTALS, 1998, 9 (08) :1439-1443
[2]   MULTISTABILITY AND RARE ATTRACTORS IN VAN DER POL-DUFFING OSCILLATOR [J].
Chudzik, A. ;
Perlikowski, P. ;
Stefanski, A. ;
Kapitaniak, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (07) :1907-1912
[3]   When is cutting chaotic? [J].
Gans, RF .
JOURNAL OF SOUND AND VIBRATION, 1995, 188 (01) :75-83
[4]  
Gilmore R., 2007, SYMMETRY CHAOS, P71
[5]  
Grantham W. J., 1993, Dynamics and Control, V3, P159, DOI 10.1007/BF01968529
[6]   Partially blind source separation of continuous chaotic signals from linear mixture [J].
Hu, W. ;
Liu, Z. .
IET SIGNAL PROCESSING, 2008, 2 (04) :424-430
[7]   The role of synchronization in digital communications using chaos - Part II: Chaotic modulation and chaotic synchronization [J].
Kolumban, G ;
Kennedy, MP ;
Chua, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1998, 45 (11) :1129-1140
[8]   HIDDEN ATTRACTORS IN DYNAMICAL SYSTEMS. FROM HIDDEN OSCILLATIONS IN HILBERT-KOLMOGOROV, AIZERMAN, AND KALMAN PROBLEMS TO HIDDEN CHAOTIC ATTRACTOR IN CHUA CIRCUITS [J].
Leonov, G. A. ;
Kuznetsov, N. V. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (01)
[9]   Hidden attractor in smooth Chua systems [J].
Leonov, G. A. ;
Kuznetsov, N. V. ;
Vagaitsev, V. I. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (18) :1482-1486
[10]   Localization of hidden Chua's attractors [J].
Leonov, G. A. ;
Kuznetsov, N. V. ;
Vagaitsev, V. I. .
PHYSICS LETTERS A, 2011, 375 (23) :2230-2233