ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis

被引:393
作者
Pierson, Emma [1 ]
Yau, Christopher [1 ,2 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford OX3 7BN, England
来源
GENOME BIOLOGY | 2015年 / 16卷
基金
英国惠康基金; 英国医学研究理事会;
关键词
HETEROGENEITY;
D O I
10.1186/s13059-015-0805-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell RNA-seq data allows insight into normal cellular function and various disease states through molecular characterization of gene expression on the single cell level. Dimensionality reduction of such high-dimensional data sets is essential for visualization and analysis, but single-cell RNA-seq data are challenging for classical dimensionality-reduction methods because of the prevalence of dropout events, which lead to zero-inflated data. Here, we develop a dimensionality-reduction method, (Z)ero (I)nflated (F)actor (A)nalysis (ZIFA), which explicitly models the dropout characteristics, and show that it improves modeling accuracy on simulated and biological data sets.
引用
收藏
页数:10
相关论文
共 17 条
  • [1] Dissecting genomic diversity, one cell at a time
    Blainey, Paul C.
    Quake, Stephen R.
    [J]. NATURE METHODS, 2014, 11 (01) : 19 - 21
  • [2] Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    Buettner, Florian
    Natarajan, Kedar N.
    Casale, F. Paolo
    Proserpio, Valentina
    Scialdone, Antonio
    Theis, Fabian J.
    Teichmann, Sarah A.
    Marioni, John C.
    Stegie, Oliver
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (02) : 155 - 160
  • [3] Islam S, 2014, NAT METHODS, V11, P163, DOI [10.1038/NMETH.2772, 10.1038/nmeth.2772]
  • [4] Kharchenko PV, 2014, NAT METHODS, V11, P740, DOI [10.1038/nmeth.2967, 10.1038/NMETH.2967]
  • [5] MULTIDIMENSIONAL-SCALING BY OPTIMIZING GOODNESS OF FIT TO A NONMETRIC HYPOTHESIS
    KRUSKAL, JB
    [J]. PSYCHOMETRIKA, 1964, 29 (01) : 1 - 27
  • [6] Lawrence N, 2005, J MACH LEARN RES, V6, P1783
  • [7] Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    Patel, Anoop P.
    Tirosh, Itay
    Trombetta, John J.
    Shalek, Alex K.
    Gillespie, Shawn M.
    Wakimoto, Hiroaki
    Cahill, Daniel P.
    Nahed, Brian V.
    Curry, William T.
    Martuza, Robert L.
    Louis, David N.
    Rozenblatt-Rosen, Orit
    Suva, Mario L.
    Regev, Aviv
    Bernstein, Bradley E.
    [J]. SCIENCE, 2014, 344 (6190) : 1396 - 1401
  • [8] Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    Pollen, Alex A.
    Nowakowski, Tomasz J.
    Shuga, Joe
    Wang, Xiaohui
    Leyrat, Anne A.
    Lui, Jan H.
    Li, Nianzhen
    Szpankowski, Lukasz
    Fowler, Brian
    Chen, Peilin
    Ramalingam, Naveen
    Sun, Gang
    Thu, Myo
    Norris, Michael
    Lebofsky, Ronald
    Toppani, Dominique
    Kemp, Darnell W., II
    Wong, Michael
    Clerkson, Barry
    Jones, Brittnee N.
    Wu, Shiquan
    Knutsson, Lawrence
    Alvarado, Beatriz
    Wang, Jing
    Weaver, Lesley S.
    May, Andrew P.
    Jones, Robert C.
    Unger, Marc A.
    Kriegstein, Arnold R.
    West, Jay A. A.
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (10) : 1053 - +
  • [9] Spatial reconstruction of single-cell gene expression data
    Satija, Rahul
    Farrell, Jeffrey A.
    Gennert, David
    Schier, Alexander F.
    Regev, Aviv
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (05) : 495 - U206
  • [10] Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    Shalek, Alex K.
    Satija, Rahul
    Shuga, Joe
    Trombetta, John J.
    Gennert, Dave
    Lu, Diana
    Chen, Peilin
    Gertner, Rona S.
    Gaublomme, Jellert T.
    Yosef, Nir
    Schwartz, Schraga
    Fowler, Brian
    Weaver, Suzanne
    Wang, Jing
    Wang, Xiaohui
    Ding, Ruihua
    Raychowdhury, Raktima
    Friedman, Nir
    Hacohen, Nir
    Park, Hongkun
    May, Andrew P.
    Regev, Aviv
    [J]. NATURE, 2014, 510 (7505) : 363 - +