Exploring Trajectory Behavior Model for Anomaly Detection in Maritime Moving Objects

被引:0
|
作者
Lei, Po-Ruey [1 ]
机构
[1] ROC Naval Acad, Dept Elect Engn, Kaohsiung, Taiwan
来源
2013 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS: BIG DATA, EMERGENT THREATS, AND DECISION-MAKING IN SECURITY INFORMATICS | 2013年
关键词
trajectory data; maritime moving object; movement behavior; anomaly detection; data mining;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As security requirements in coastal water and sea ports, maritime surveillance increases the duty. In this research, we focus on the maritime trajectory data to explore movement behavior for anomaly detection in maritime traffic. Trajectory data records the moving objects' true movement and provides the opportunity to discover the movement behavior for anomaly detection. The multidimensional outlying features are first identified and defined. To deal with the uncertain property of trajectory, a maritime trajectory modeling is developed to explore the movement behavior from historical trajectories and build a maritime trajectory model for anomaly detection. Then, our ongoing work is developing an anomaly detection algorithm to detect anomalous moving objects from real time maritime trajectory stream effectively. This work should contribute the area of maritime security surveillance by trajectory data mining.
引用
收藏
页码:271 / 271
页数:1
相关论文
共 50 条
  • [1] A framework for anomaly detection in maritime trajectory behavior
    Lei, Po-Ruey
    KNOWLEDGE AND INFORMATION SYSTEMS, 2016, 47 (01) : 189 - 214
  • [2] A framework for anomaly detection in maritime trajectory behavior
    Po-Ruey Lei
    Knowledge and Information Systems, 2016, 47 : 189 - 214
  • [3] Trajectory pattern extraction and anomaly detection for maritime vessels
    Karatas, Gozde Boztepe
    Karagoz, Pinar
    Ayran, Orhan
    INTERNET OF THINGS, 2021, 16
  • [4] Survey on Trajectory Anomaly Detection
    Li C.-N.
    Feng G.-W.
    Yao H.
    Liu R.-Y.
    Li Y.-N.
    Xie K.
    Miao Q.-G.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (02): : 927 - 974
  • [5] Maritime anomaly detection: A review
    Riveiro, Maria
    Pallotta, Giuliana
    Vespe, Michele
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 8 (05)
  • [6] The role of visualization and interaction in maritime anomaly detection
    Riveiro, Maria
    Falkman, Goran
    VISUALIZATION AND DATA ANALYSIS 2011, 2011, 7868
  • [7] Anomaly detection in the maritime domain
    Roy, Jean
    OPTICS AND PHOTONICS IN GLOBAL HOMELAND SECURITY IV, 2008, 6945
  • [8] Evaluation of Normal Model Visualization for Anomaly Detection in Maritime Traffic
    Riveiro, Maria
    ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2014, 4 (01)
  • [9] Identifying effective trajectory predictions under the guidance of trajectory anomaly detection model
    Wang, Chunnan
    Liang, Chen
    Chen, Xiang
    Wang, Hongzhi
    PATTERN RECOGNITION, 2023, 140
  • [10] Anomaly Detection in Trajectory Data with Normalizing Flows
    Dias, Madson L. D.
    Mattos, Cesar Lincoln C.
    da Silva, Ticiana L. C.
    de Macedo, Jose Antonio F.
    Silva, Wellington C. P.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,