Sliced inverse regression in reference curves estimation

被引:16
作者
Gannoun, A
Girard, S
Guinot, C
Saracco, J [1 ]
机构
[1] Univ Montpellier 2, Lab Probabil & Stat, Pl Eugene Bataillon, F-34095 Montpellier 5, France
[2] Howard Univ, Natl Human Genome Ctr, Stat Genet & Bioinformat Unit, Washington, DC 20059 USA
[3] Univ Grenoble 1, SMSLMC, F-38041 Grenoble 9, France
[4] CERIES, F-92521 Neuilly Sur Seine, France
关键词
conditional quantiles; dimension reduction; kernel estimation; semiparametric method; reference curves; sliced inverse regression (SIR);
D O I
10.1016/S0167-9473(03)00141-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In order to obtain reference curves for data sets when the covariate is multidimensional, a new procedure is, proposed. This procedure is based on dimension-reduction and non-parametric estimation of conditional quintiles. This semiparametric approach combines sliced inverse regression (SIR) and a kernel estimation of conditional quintiles. The asymptotic convergence of the derived estimator is shown. By a simulation study, this procedure is compared to the classical kernel icon-parametric one for different dimensions of the covariate. The semiparametric estimator shows the best performance. The usefulness of this estimation procedure is illustrated on a real data set collected in order to establish reference curves for biophysical properties of the skin of healthy French women. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 122
页数:20
相关论文
共 54 条
[1]  
Aragon Y, 1997, COMPUTATION STAT, V12, P109
[2]   Asymptotic normality of convergent estimates of conditional quantiles [J].
Berlinet, A ;
Gannoun, A ;
Matzner-Lober, E .
STATISTICS, 2001, 35 (02) :139-169
[3]  
Bura E, 1997, INST MATH S, V31, P215
[4]   Regression quantiles for time series [J].
Cai, ZW .
ECONOMETRIC THEORY, 2002, 18 (01) :169-192
[5]   NONPARAMETRIC ESTIMATES OF REGRESSION QUANTILES AND THEIR LOCAL BAHADUR REPRESENTATION [J].
CHAUDHURI, P .
ANNALS OF STATISTICS, 1991, 19 (02) :760-777
[6]   GLOBAL NONPARAMETRIC-ESTIMATION OF CONDITIONAL QUANTILE FUNCTIONS AND THEIR DERIVATIVES [J].
CHAUDHURI, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 39 (02) :246-269
[7]  
Chen CH, 1998, STAT SINICA, V8, P289
[9]  
Cook R.D., 1994, INTRO REGRESSION GRA
[10]  
COOK R. D., 1998, WILEY PROB STAT