A decreasing sequence of upper bounds for the Laplacian energy of a tree

被引:6
作者
Carmona, Juan [1 ]
Gutman, Ivan [2 ]
Tamblay, Nelda Jaque [1 ]
Robbiano, Maria [1 ]
机构
[1] Univ Catolica Norte, Dept Matemat, Antofagasta, Chile
[2] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
关键词
Graph spectrum; Laplacian spectrum (of a graph); Laplacian energy; Energy (of a matrix); SPECTRUM; GRAPHS;
D O I
10.1016/j.laa.2014.01.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a nonnegative Hermitian matrix. The energy of R, denoted by E(R), is the sum of absolute values of its eigenvalues. We construct an increasing sequence that converges to the Perron root of R. This sequence yields a decreasing sequence of upper bounds for E(R). We then apply this result to the Laplacian energy of trees of order n, namely to the sum of the absolute values of the eigenvalues of the Laplacian matrix, shifted by -2(n - 1)/n. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:304 / 313
页数:10
相关论文
共 25 条
[1]   Bounds for the signless Laplacian energy [J].
Abreu, Nair ;
Cardoso, Domingos M. ;
Gutman, Ivan ;
Martins, Enide A. ;
Robbiano, Maria .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) :2365-2374
[2]  
[Anonymous], 2009, Analysis of Complex Networks: From Biology to Linguistics, DOI DOI 10.1002/9783527627981.CH7
[3]   A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph [J].
Cardoso, Domingos M. ;
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (11-12) :2770-2780
[4]  
Cvetkovi DM., 1980, Spectra of Graphs: Theory and Applications
[5]  
Cvetkovic D, 2010, An Introduction to the Theory of Graph Spectra
[6]   Signless Laplacians of finite graphs [J].
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) :155-171
[7]   On matrices associated to directed graphs and applications [J].
de Freitas, Maria Aguieiras A. ;
Bonifacio, Andrea Soares ;
Robbiano, Maria ;
San Martin, Bernardo .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 :156-164
[8]  
Goubko M, 2014, MATCH-COMMUN MATH CO, V71, P33
[9]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238
[10]   THE LAPLACIAN SPECTRUM OF A GRAPH .2. [J].
GRONE, R ;
MERRIS, R .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) :221-229