The Multiple Evolutionary Histories of Dioxygen Reductases: Implications for the Origin and Evolution of Aerobic Respiration

被引:79
作者
Brochier-Armanet, Celine [1 ,2 ]
Talla, Emmanuel [2 ,3 ]
Gribaldo, Simonetta [4 ]
机构
[1] Univ Aix Marseille 1, Marseille, France
[2] Inst Microbiol Mediterranee IF88, Chim Bacterienne Lab, Marseille, France
[3] Univ Mediterranee, Marseille, France
[4] Inst Pasteur, Dept Microbiol, Unite Biol Mol Chez Extremophiles, Paris, France
关键词
NITRIC-OXIDE REDUCTASES; CYTOCHROME-C-OXIDASE; THERMUS-THERMOPHILUS; TERMINAL OXIDASES; SEQUENCE ALIGNMENT; ARCHAEAL PHYLUM; GENE-TRANSFER; CBB(3); BD; BACTERIA;
D O I
10.1093/molbev/msn246
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the origin and evolution of cellular processes is fundamental to understand how biological activity has shaped the history of our planet. Among these, aerobic respiration is probably one of the most debated. We have applied a phylogenomics approach to investigate the origin and evolution of dioxygen reductases (O(2)Red), the key enzymes of aerobic respiratory chains. The distribution and phylogenetic analysis of the four types of O(2)Red (Cyt-bd and the A, B, and C families of heme-copper O(2)Red) from 673 complete bacterial and archaeal genomes show that these enzymes have very different evolutionary histories: Cyt-bd are of bacterial origin and were transferred to a few archaea; C-O(2)Red are of proteobacterial origin and were transferred to a few other bacteria; B-O(2)Red are of archaeal origin and were transferred to a few bacteria; and A-O(2)Red are the most ancient O(2)Red and were already present prior to the divergence of major present-day bacterial and archaeal phyla, thus before the emergence of Cyanobacteria and oxygenic photosynthesis. Implications for the origin and the evolution of aerobic respiration are discussed.
引用
收藏
页码:285 / 297
页数:13
相关论文
共 56 条
[1]  
Bapteste Eric, 2005, Archaea, V1, P353, DOI 10.1155/2005/859728
[2]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkh121, 10.1093/nar/gkr1065, 10.1093/nar/gkp985]
[3]   A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land [J].
Battistuzzi, FU ;
Feijao, A ;
Hedges, SB .
BMC EVOLUTIONARY BIOLOGY, 2004, 4 (1)
[4]   The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen [J].
Baughn, AD ;
Malamy, MH .
NATURE, 2004, 427 (6973) :441-444
[5]   Transmembrane proton translocation by cytochrome c oxidase [J].
Branden, Gisela ;
Gennis, Robert B. ;
Brzezinski, Peter .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (08) :1052-1063
[6]   Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? [J].
Brochier, C ;
Gribaldo, S ;
Zivanovic, Y ;
Confalonieri, F ;
Forterre, P .
GENOME BIOLOGY, 2005, 6 (05)
[7]   Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota [J].
Brochier-Armanet, Celine ;
Boussau, Bastien ;
Gribaldo, Simonetta ;
Forterre, Patrick .
NATURE REVIEWS MICROBIOLOGY, 2008, 6 (03) :245-252
[8]   NEW ARCHAEBACTERIAL GENES-CODING FOR REDOX PROTEINS - IMPLICATIONS FOR THE EVOLUTION OF AEROBIC METABOLISM [J].
CASTRESANA, J ;
LUBBEN, M ;
SARASTE, M .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 250 (02) :202-210
[9]   EVOLUTION OF CYTOCHROME-OXIDASE, AN ENZYME OLDER THAN ATMOSPHERIC OXYGEN [J].
CASTRESANA, J ;
LUBBEN, M ;
SARASTE, M ;
HIGGINS, DG .
EMBO JOURNAL, 1994, 13 (11) :2516-2525
[10]   Comparative genomics and bioenergetics [J].
Castresana, J .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2001, 1506 (03) :147-162