Acyclic edge coloring of planar graphs with girth at least 5

被引:7
作者
Hou, Jianfeng [1 ]
Wang, Weitao [1 ]
Zhang, Xiaoran [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350003, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Planar graph; Girth; Acyclic edge coloring; Critical; SPARSE HESSIAN MATRICES; CHROMATIC INDEXES;
D O I
10.1016/j.dam.2013.06.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proper edge coloring of a graph G is acyclic if there is no bichromatic cycle in G. The acyclic chromatic index of G, denoted chi(a)'(G), is the least number of colors k such that G has an acyclic k-edge-coloring. In this paper, it is shown that if G is a planar graph with girth at least 5 and maximum degree Delta, then chi(a)'(G) <= Delta + 1. Moreover, Delta >= 9, then chi(a)'(G) = Delta. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2958 / 2967
页数:10
相关论文
共 23 条
[21]   Acyclic edge coloring of planar graphs without 5-cycles [J].
Shu, Qiaojun ;
Wang, Weifan ;
Wang, Yiqiao .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) :1211-1223
[22]   Acyclic chromatic indices of planar graphs with large girth [J].
Wang, Weifan ;
Shu, Qiaojun ;
Wang, Kan ;
Wang, Ping .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) :1239-1253
[23]   Acyclic edge coloring of planar graphs with large girth [J].
Yu, Dongxiao ;
Hou, Jianfeng ;
Liu, Guizhen ;
Liu, Bin ;
Xu, Lan .
THEORETICAL COMPUTER SCIENCE, 2009, 410 (47-49) :5196-5200