Numerical simulation and analysis of generalized difference method on triangular networks for electrical impedance tomography

被引:2
作者
Li, Jiuping [1 ]
Yuan, Yirang [1 ]
机构
[1] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrical impedance tomography; Generalized difference method; Stability; Element geometry matrix; Numerical simulation;
D O I
10.1016/j.apm.2008.05.025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrical impedance tomography is an inverse problem of elliptic differential equations. Numerical methods based on combining generalized difference method and Levenberg-Marquardt iteration on a planar domain are proposed. Positive semi-definiteness and existence of solution of the generalized difference scheme are proved. Element geometry matrix is introduced to shortcut calculation and standardize computer program. A series of numerical experiments verify the reliability of its mathematical model and the feasibility of the algorithm. A class of electrical current patterns is proposed to minimize the number of direct problems to be solved in each iteration. These methods have been applied successfully in practical simulation of electrical impedance tomography. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2175 / 2186
页数:12
相关论文
共 15 条
  • [1] Variationally constrained numerical solution of electrical impedance tomography
    Borcea, L
    Gray, GA
    Zhang, Y
    [J]. INVERSE PROBLEMS, 2003, 19 (05) : 1159 - 1184
  • [2] Brühl M, 2001, SIAM J MATH ANAL, V32, P1327
  • [3] Electrical impedance tomography
    Cheney, M
    Isaacson, D
    Newell, JC
    [J]. SIAM REVIEW, 1999, 41 (01) : 85 - 101
  • [4] DU Y, 1997, CHIN J BIOMED ENG, V16, P167
  • [5] ERIC TC, 2005, J COMPUT PHYS, V205, P357
  • [6] ISAKOV V, 1998, INVERSE PROBLEM PART, P20
  • [7] KIRSCH A, 1996, INTRO MATH THEORY IN, P65
  • [8] Newton regularizations for impedance tomography: a numerical study
    Lechleiter, Armin
    Rieder, Andreas
    [J]. INVERSE PROBLEMS, 2006, 22 (06) : 1967 - 1987
  • [9] LI R, 2000, GEN DIFFERENCE METHO, P35
  • [10] Li R. H., 1982, NUMER MATH J CHINESE, V2, P140