Local times for multifractional Brownian motion in higher dimensions: A white noise approach

被引:4
作者
Bock, Wolfgang [1 ]
da Silva, Jose Luis [2 ]
Suryawan, Herry P. [3 ]
机构
[1] Tech Univ Kaiserslautern, Fachbereich Math, Postfach 3049, D-67653 Kaiserslautern, Germany
[2] Univ Madeira, CIMA, Campus Penteada, P-9020105 Funchal, Portugal
[3] Sanata Dharma Univ, Dept Math, Yogyakarta, Indonesia
关键词
Multifractional brownian motion; local time; white noise analysis; GENERALIZED FUNCTIONALS; STOCHASTIC CALCULUS; PATH PROPERTIES; RESPECT;
D O I
10.1142/S0219025716500260
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the expansion of the multifractional Brownian motion (mBm) local time in higher dimensions, in terms of Wick powers of white noises (or multiple Wiener integrals). If a suitable number of kernels is subtracted, they exist in the sense of generalized white noise functionals. Moreover, we show the convergence of the regularized truncated local times for mBm in the sense of Hida distributions.
引用
收藏
页数:16
相关论文
共 34 条
[11]  
Chan G., 1998, COMPSTAT PHYS, P233
[12]   Intersection local times as generalized white noise functionals [J].
DeFaria, M ;
Hida, T ;
Streit, L ;
Watanabe, H .
ACTA APPLICANDAE MATHEMATICAE, 1997, 46 (03) :351-362
[13]  
Drumond C, 2008, AIP CONF PROC, V1021, P34, DOI 10.1063/1.2956798
[14]   Stochastic calculus for fractional Brownian motion - I. Theory [J].
Duncan, TE ;
Hu, YZ ;
Pasik-Duncan, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) :582-612
[15]   STATISTICAL MECHANICS OF POLYMERS WITH EXCLUDED VOLUME [J].
EDWARDS, SF .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1965, 85 (546P) :613-&
[16]   A general fractional white noise theory and applications to finance [J].
Elliott, RJ ;
van der Hoek, J .
MATHEMATICAL FINANCE, 2003, 13 (02) :301-330
[17]   Self-avoiding Fractional Brownian Motion-The Edwards Model [J].
Grothaus, Martin ;
Oliveira, Maria Joao ;
da Silva, Jose Luis ;
Streit, Ludwig .
JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (06) :1513-1523
[18]  
Hida T., 1993, WHITE NOISE INFINITE
[19]   Fractional white noise calculus and applications to finance [J].
Hu, YZ ;
Oksendal, B .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (01) :1-32
[20]  
Hui YZ, 2007, COMMUN INF SYST, V7, P21