Controlled synthesis, efficient purification, and electrochemical characterization of arc-discharge carbon nano-onions

被引:88
作者
Borgohain, Rituraj [1 ]
Yang, Juchan [1 ]
Selegue, John P. [1 ]
Kim, Doo Young [1 ]
机构
[1] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
ELECTRON-TRANSFER KINETICS; DIAMOND; PERFORMANCE; NANOTUBES; OXIDATION; BEHAVIOR; GRAPHITIZATION; NANOPARTICLES; ACTIVATION; DISPERSION;
D O I
10.1016/j.carbon.2013.09.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Arc-produced carbon nano-onions (A-CNOs), with a hollow core surrounded by multilayered sp(2) carbon shells, possess unique structural and electronic properties. While nanodiamond derived CNOs (5-7 nm) are attracting significant attentions, for A-CNOs (20-50 nm) controlling the growth and separating them from carbon impurities are the major challenges that impede further study and application of these materials. We have addressed these issues; first by designing an in-house automated underwater arc discharge apparatus to control the arc plasma that produces homogeneous A-CNOs (diameter 25-35 nm) with minimal carbon impurities. Secondly, for further purification we have developed a very efficient method by utilizing the strong preferential adsorption of polyoxometalates. A-CNO growth and purification were investigated using thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray diffraction (XRD). Furthermore, the electrochemical properties and electrocatalytic activities of purified A-CNOs were investigated with various redox species including neurotransmitter molecules. Compared to glassy carbon (GC) electrode, A-CNO showed excellent electrochemical performances including larger faradaic currents and facilitated electron-transfer kinetics. Controlled synthesis, efficient purification and the excellent electrocatalytic activities of A-CNOs reported herein will enable the utilization of these materials for various applications including biosensing, fuel-cell catalysts and energy-storage devices. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:272 / 284
页数:13
相关论文
共 65 条
[1]   Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures [J].
Andrews, R ;
Jacques, D ;
Qian, D ;
Dickey, EC .
CARBON, 2001, 39 (11) :1681-1687
[2]   The formation, annealing and self-compression of carbon onions under electron irradiation [J].
Banhart, F ;
Fuller, T ;
Redlich, P ;
Ajayan, PM .
CHEMICAL PHYSICS LETTERS, 1997, 269 (3-4) :349-355
[3]   Measurement of single-wall nanotube dispersion by size exclusion chromatography [J].
Bauer, Barry J. ;
Becker, Matthew L. ;
Bajpai, Vardhan ;
Fagan, Jeffrey A. ;
Hobbie, Erik K. ;
Migler, Kalman ;
Guttman, Charles M. ;
Blair, William R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (48) :17914-17918
[4]   Effect of sp2-bonded nondiamond carbon impurity on the response of boron-doped polycrystalline diamond thin-film electrodes [J].
Bennett, JA ;
Wang, JA ;
Show, Y ;
Swain, GM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (09) :E306-E313
[5]   Electrochemical Study of Functionalized Carbon Nano-Onions for High-Performance Supercapacitor Electrodes [J].
Borgohain, Rituraj ;
Li, Juchuan ;
Selegue, John P. ;
Cheng, Y-T .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (28) :15068-15075
[6]   ACTIVATION OF HIGHLY ORDERED PYROLYTIC-GRAPHITE FOR HETEROGENEOUS ELECTRON-TRANSFER - RELATIONSHIP BETWEEN ELECTROCHEMICAL PERFORMANCE AND CARBON MICROSTRUCTURE [J].
BOWLING, RJ ;
PACKARD, RT ;
MCCREERY, RL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (04) :1217-1223
[7]   Electrochemical oxidation and determination of dopamine in the presence of uric and ascorbic acids using a carbon nano-onion and poly(diallyldimethylammonium chloride) composite [J].
Breczko, Joanna ;
Plonska-Brzezinska, Marta E. ;
Echegoyen, Luis .
ELECTROCHIMICA ACTA, 2012, 72 :61-67
[8]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[9]   ELECTRON-TRANSFER KINETICS AT MODIFIED CARBON ELECTRODE SURFACES - THE ROLE OF SPECIFIC SURFACE SITES [J].
CHEN, PH ;
FRYLING, MA ;
MCCREERY, RL .
ANALYTICAL CHEMISTRY, 1995, 67 (18) :3115-3122
[10]   New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition [J].
Chen, XH ;
Deng, FM ;
Wang, JX ;
Yang, HS ;
Wu, GT ;
Zhang, XB ;
Peng, JC ;
Li, WZ .
CHEMICAL PHYSICS LETTERS, 2001, 336 (3-4) :201-204