A Jacobi-Davidson Method for Large Scale Canonical Correlation Analysis

被引:0
|
作者
Teng, Zhongming [1 ]
Zhang, Xiaowei [1 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Comp & Informat Sci, Fuzhou 350002, Peoples R China
基金
中国国家自然科学基金;
关键词
canonical correlation analysis; Jacobi-Davidson; generalized eigenvalue problems; convergence; ALGORITHMS; CHEBYSHEV;
D O I
10.3390/a13090229
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the large scale canonical correlation analysis arising from multi-view learning applications, one needs to compute canonical weight vectors corresponding to a few of largest canonical correlations. For such a task, we propose a Jacobi-Davidson type algorithm to calculate canonical weight vectors by transforming it into the so-called canonical correlation generalized eigenvalue problem. Convergence results are established and reveal the accuracy of the approximate canonical weight vectors. Numerical examples are presented to support the effectiveness of the proposed method.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Jacobi-Davidson type SVD method
    Hochstenbach, ME
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02) : 606 - 628
  • [2] Improving the parallel performance of a domain decomposition preconditioning technique in the Jacobi-Davidson method for large scale eigenvalue problems
    Genseberger, Menno
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (11) : 1083 - 1099
  • [3] HOMOGENEOUS JACOBI-DAVIDSON
    Hochstenbach, Michiel E.
    Notay, Yvan
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 29 : 19 - 30
  • [4] Is Jacobi-Davidson faster than Davidson?
    Notay, Y
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (02) : 522 - 543
  • [5] CONTROLLING INNER ITERATIONS IN THE JACOBI-DAVIDSON METHOD
    Hochstenbach, Michiel E.
    Notay, Yvan
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) : 460 - 477
  • [6] INCREASING THE PERFORMANCE OF THE JACOBI-DAVIDSON METHOD BY BLOCKING
    Roehrig-Zoellner, Melven
    Thies, Jonas
    Kreutzer, Moritz
    Alvermann, Andreas
    Pieper, Andreas
    Basermann, Achim
    Hager, Georg
    Wellein, Gerhard
    Fehske, Holger
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06) : C697 - C722
  • [7] A Jacobi-Davidson type method for the generalized singular value problem
    Hochstenbach, M. E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 471 - 487
  • [8] JACOBI-DAVIDSON METHOD ON LOW-RANK MATRIX MANIFOLDS
    Rakhuba, M. V.
    Oseledets, I. V.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02) : A1149 - A1170
  • [9] On local quadratic convergence of inexact simplified Jacobi-Davidson method
    Bai, Zhong-Zhi
    Miao, Cun-Qiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 520 : 215 - 241
  • [10] A Jacobi-Davidson type method for the product eigenvalue problem
    Hochstenbach, Michiel E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 212 (01) : 46 - 62